CLRS 6-3 :Young氏矩阵( 杨氏矩阵)
解答:
(a)2 4 9 12
3 5 14 Max
8 16 Max Max
Max Max Max Max
(b)Y[1, 1]为Max的话,那么按照Young氏矩阵定义,矩阵中其他数值必然大于等于它,所以Y为空。
若Y[m, n] < Max的话,由其他元素都小于等于Y[m, n]可知此矩阵是满的。
(c)算法思想:
1)A[0][0]必然是最小值,将其取出,然后将矩阵的最后一个元素A[m-1[n-1]补到第一位来,并将A[m-1[n-1]设置为Max
2)将A[0][0]与A[0][1]和A[1][0]二者之间的最小值进行交换,
3)若交换的是A[0][1],则在下一步对m*(n-1)矩阵的第一个元素重复2,
若交换的是A[1][0],则在下一步对(m-1)*n矩阵的第一个元素重复2
总之每次总是将第一个元素与其周边元素进行比较而已。
using namespace std;
//假设MAX为无穷大
#define MAX 1000000
int extract_min(int** a, int m, int n);
void young_matrixify(int** a, int i, int j, int m, int n);
int main()
{
int a[4][4] = {2, 4, 9, 12, 3, 5, 14, MAX, 8, 16, MAX, MAX, MAX, MAX, MAX, MAX};
//打印数组a,可以看出它符合young氏矩阵的定义
for(int i =0; i <4; i++)
{
for(int j =0; j <4; j++)
cout<<a[i][j]<<"\t";
cout<<endl;
}
int** b =new int*[4];
for(int i =0; i <4; i++)
b[i] =new int[4];
for(int i =0; i <4; i++)
{
for(int j =0; j <4; j++)
b[i][j] = a[i][j];
}
//第一次取出最小值
extract_min(b, 4, 4);
//打印取出最小值之后的young氏矩阵
for(int i =0; i <4; i++)
{
for(int j =0; j <4; j++)
cout<<b[i][j]<<"\t";
cout<<endl;
}
//再次取出最小值
extract_min(b, 4, 4);
//打印取出最小值之后的young氏矩阵
for(int i =0; i <4; i++)
{
for(int j =0; j <4; j++)
cout<<b[i][j]<<"\t";
cout<<endl;
}
return 0;
}
int extract_min(int** a, int m, int n)
{
int temp = a[0][0];
a[0][0] = a[m-1][n-1];
a[m-1][n-1] = MAX;
young_matrixify(a, 0, 0, m, n);
return temp;
}
//分了四种情况进行讨论,以i,j是否到达边界为区分点
void young_matrixify(int** a, int i, int j, int m, int n)
{
if(i < m && j < n)
{
int ii = i;
int jj = j;
if(i+1< m && j+1< n && a[i+1][j] > a[i][j+1])
{
int temp = a[i][j];
a[i][j] = a[i][j+1];
a[i][j+1] = temp;
jj = j +1;
}
else if(i+1< m && j+1< n && a[i+1][j] < a[i][j+1])
{
int temp = a[i][j];
a[i][j] = a[i+1][j];
a[i+1][j] = temp;
ii = i +1;
}
else if(i+1< m && j+1== n && a[i+1][j] < a[i][j])
{
int temp = a[i][j];
a[i][j] = a[i+1][j];
a[i+1][j] = temp;
ii = i +1;
}
else if(j+1< n && i+1== m && a[i][j+1] < a[i][j])
{
int temp = a[i][j];
a[i][j] = a[i][j+1];
a[i][j+1] = temp;
jj = j +1;
}
if(ii != i || jj != j)
young_matrixify(a, ii, jj, m, n);
}
}
(d)其实插入与(c)中的取出操作大同小异,将插入元素放入未满位置,然后比较相邻元素,直至相邻元素都比它小。
(e)所有的数首先插入到矩阵中所用时间为n^2*O(2n),然后取出操作为n^2*O(2n),加起来化简之后即为O(n^3)。
(f)算法思想:
从A[m-1][0],即左下角开始寻找,比较相邻元素,然后不断循环至m*(n-1)或(m-1)*n矩阵,画画图就很明了了。
下列代码加入上面代码中即可。
bool find(int** a, int goal, int m, int n)
{
int mm = m;
int nn = n;
while(m>0&& n >0)
{
if(a[m-1][nn - n] == goal)
{
return true;
}
else if(a[m-1][nn - n] > goal)
--m;
else if(a[m-1][nn - n] < goal)
--n;
}
return false;
}
来源:https://www.cnblogs.com/null00/archive/2011/03/21/2065075.html