概率论部分
Chapter 1: 随机事件及其概率
1 随机试验;样本点;样本空间
2 随机事件, 必然事件, 不可能事件, 互不相容事件, 对立事件;随机事件的关系及运算
3 概率的定义
4 概率的性质:有限可加性,减法公式,加法公式,及推论
5 条件概率及乘法公式
6 两个事件相互独立的定义及性质;多个事件相互独立的定义及性质
7 伯努利概率模型
8 全概率公式
9 贝叶斯公式
Chapter 2: 随机变量及其分布
1 随机变量;离散型随机变量;连续型随机变量
2 分布函数及性质
3 离散型随机变量的分布率及性质;连续性随机变量的概率密度函数及性质
4 常见的离散型随机变量的分布:0-1 分布;二项分布;泊松分布
5 常见的连续型随机变量的分布: 均匀分布;指数分布;正态分布
6 随机变量的函数的分布: 离散型随机变量函数的分布;连续型随机变量函数的分布(分布函数法和公式法)
Chapter 3: 数字特征
1 数学期望;离散型随机变量的期望;连续型随机变量的期望;随机变量的函数的期望
2 数学期望的性质
3 方差;标准差
4 方差的性质
5 变异系数(注:不是很重要)
6 常见随机变量的期望和方差: 两点分布的期望和方差;泊松分布的期望和方差;均匀分布的期望和方差;指数分布的期望和方差;正态分布的期望和方差
Chapter 4: 随机向量(或称多维随机变量)及其分布
1 随机向量
2 二维随机向量的联合分布函数及其性质
3 边缘分布函数
4 二维离散型随机向量;二维离散型随机变量的联合分布率;二维离散型随机变量的边缘分布率
5 二维连续型随机向量;二维连续型随机向量的联合密度函数及性质(特别注意公式 (4.3.3));二维连续型随机向量的边缘密度函数
6 二维正态分布
7 随机变量的独立性(了解定理 4.4.1)
8 条件分布 (了解离散型随机变量的条件分布;连续型随机变量的条件分布不做要求)
9 二维随机向量的函数的分布: 离散型;连续型(主要知道连续型随机变量和的分布以及最大值和最小值的分布)
10 二维随机向量的函数的数字特征
11 期望和方差的运算性质
12 协方差及其性质
13 相关系数及其性质
14 二维随机向量的数学期望向量和协方差矩阵
Chapter 5: 极限理论
1 大数定理 5.1.4及5.1.3 (注:定理5.1.3是定理5.1.4的特例)
2 中心极限定理 5.2.2及5.2.1 (注: 定理5.2.1是定理5.2.2的特例)
数理统计部分
Chapter 6: 数理统计基础知识
1 基本概念:总体,样本,样本函数,统计量,常见统计量
2 抽样分布:三大抽样分布
3 单正态总体常用样本函数的分布
Chapter 7: 参数估计
1 点估计:点估计方法,评价标准
2 区间估计:区间估计的基本思想与一般步骤,单正态总体参数的区间估计
Chapter 8:假设检验
1 假设检验:假设检验的一般概念,单正态总体参数的假设检验
来源:https://www.cnblogs.com/zhenan2014/p/4114474.html