问题
I am trying to introduce myself to MCMC sampling with emcee. I want to simply take a sample from a Maxwell Boltzmann distribution using a set of example code on github, https://github.com/dfm/emcee/blob/master/examples/quickstart.py.
The example code is really excellent, but when I change the distribution from a Gaussian to a Maxwellian, I receive the error, TypeError: lnprob() takes exactly 2 arguments (3 given)
However it is not called anywhere where it is not given the appropriate parameters? In need of some guidance as to how to define a Maxwellian Curve and have it fit into this example code.
Here is what I have;
from __future__ import print_function
import numpy as np
import emcee
try:
xrange
except NameError:
xrange = range
def lnprob(x, a, icov):
pi = np.pi
return np.sqrt(2/pi)*x**2*np.exp(-x**2/(2.*a**2))/a**3
ndim = 2
means = np.random.rand(ndim)
cov = 0.5-np.random.rand(ndim**2).reshape((ndim, ndim))
cov = np.triu(cov)
cov += cov.T - np.diag(cov.diagonal())
cov = np.dot(cov,cov)
icov = np.linalg.inv(cov)
nwalkers = 50
p0 = [np.random.rand(ndim) for i in xrange(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[means, icov])
pos, prob, state = sampler.run_mcmc(p0, 5000)
sampler.reset()
sampler.run_mcmc(pos, 100000, rstate0=state)
Thanks
回答1:
I think there are a couple of problems that I see. The main one is that emcee wants you to give it the natural logarithm of the probability distribution function that you want to sample. So, rather than having:
def lnprob(x, a, icov):
pi = np.pi
return np.sqrt(2/pi)*x**2*np.exp(-x**2/(2.*a**2))/a**3
you would instead want, e.g.
def lnprob(x, a):
pi = np.pi
if x < 0:
return -np.inf
else:
return 0.5*np.log(2./pi) + 2.*np.log(x) - (x**2/(2.*a**2)) - 3.*np.log(a)
where the if...else... statement is to explicitly say that negative values of x
have zero probability (or -infinity in log-space).
You also shouldn't have to calculate icov
and pass it to lnprob
as that's only needed for the Gaussian case in the example you link to.
When you call:
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[means, icov])
the args
value should just be any additional arguments that your lnprob
function requires, so in your case this would be the value of a
that you want to set your Maxwell-Boltxmann distribution up with. This should be a single value rather than the two randomly initialised values you have set when creating mean
.
Overall, the following should work for you:
from __future__ import print_function
import emcee
import numpy as np
from numpy import pi as pi
# define the natural log of the Maxwell-Boltzmann distribution
def lnprob(x, a):
if x < 0:
return -np.inf
else:
return 0.5*np.log(2./pi) + 2.*np.log(x) - (x**2/(2.*a**2)) - 3.*np.log(a)
# choose a value of 'a' for the distributions
a = 5. # I'm choosing 5!
# choose the number of walkers
nwalkers = 50
# set some initial points at which to calculate the lnprob
p0 = [np.random.rand(1) for i in xrange(nwalkers)]
# initialise the sampler
sampler = emcee.EnsembleSampler(nwalkers, 1, lnprob, args=[a])
# Run 5000 steps as a burn-in.
pos, prob, state = sampler.run_mcmc(p0, 5000)
# Reset the chain to remove the burn-in samples.
sampler.reset()
# Starting from the final position in the burn-in chain, sample for 100000 steps.
sampler.run_mcmc(pos, 100000, rstate0=state)
# lets check the samples look right
mbmean = 2.*a*np.sqrt(2./pi) # mean of Maxwell-Boltzmann distribution
print("Sample mean = {}, analytical mean = {}".format(np.mean(sampler.flatchain[:,0]), mbmean))
mbstd = np.sqrt(a**2*(3*np.pi-8.)/np.pi) # std. dev. of M-B distribution
print("Sample standard deviation = {}, analytical = {}".format(np.std(sampler.flatchain[:,0]), mbstd))
来源:https://stackoverflow.com/questions/43964707/mcmc-sampling-a-maxwellian-curve-using-pythons-emcee