Go语言调度器之创建main goroutine(13)

不想你离开。 提交于 2020-01-04 04:46:39

本文是《Go语言调度器源代码情景分析》系列的第13篇,也是第二章的第3小节。


上一节我们分析了调度器的初始化,这一节我们来看程序中的第一个goroutine是如何创建的。

创建main goroutine

接上一节,schedinit完成调度系统初始化后,返回到rt0_go函数中开始调用newproc() 创建一个新的goroutine用于执行mainPC所对应的runtime·main函数,看下面的代码:

runtime/asm_amd64.s : 197

# create a new goroutine to start program
MOVQ  $runtime·mainPC(SB), AX# entry,mainPC是runtime.main
# newproc的第二个参数入栈,也就是新的goroutine需要执行的函数
PUSHQ  AX         # AX = &funcval{runtime·main},

# newproc的第一个参数入栈,该参数表示runtime.main函数需要的参数大小,因为runtime.main没有参数,所以这里是0
PUSHQ  $0
CALL  runtime·newproc(SB) # 创建main goroutine
POPQ  AX
POPQ  AX

# start this M
CALL  runtime·mstart(SB)  # 主线程进入调度循环,运行刚刚创建的goroutine

# 上面的mstart永远不应该返回的,如果返回了,一定是代码逻辑有问题,直接abort
CALL  runtime·abort(SB)// mstart should never return
RET

DATA  runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOB  Lruntime·mainPC(SB),RODATA,$8

 

在后面的分析过程中我们会看到这个runtime.main最终会调用我们写的main.main函数,在分析runtime·main之前我们先把重点放在newproc这个函数上。

newproc函数用于创建新的goroutine,它有两个参数,先说第二个参数fn,新创建出来的goroutine将从fn这个函数开始执行,而这个fn函数可能也会有参数,newproc的第一个参数正是fn函数的参数以字节为单位的大小。比如有如下go代码片段:

func start(a, b, c int64) {
   ......
}

func main() {
   go start(1, 2, 3)
}

 

编译器在编译上面的go语句时,就会把其替换为对newproc函数的调用,编译后的代码逻辑上等同于下面的伪代码

func main() {
    push 0x3
    push 0x2
    push 0x1
    runtime.newproc(24, start)
}

 

编译器编译时首先会用几条指令把start函数需要用到的3个参数压栈,然后调用newproc函数。因为start函数的3个int64类型的参数共占24个字节,所以传递给newproc的第一个参数是24,表示start函数需要24字节大小的参数。

那为什么需要传递fn函数的参数大小给newproc函数呢?原因就在于newproc函数将创建一个新的goroutine来执行fn函数,而这个新创建的goroutine与当前这个goroutine会使用不同的栈,因此就需要在创建goroutine的时候把fn需要用到的参数先从当前goroutine的栈上拷贝到新的goroutine的栈上之后才能让其开始执行,而newproc函数本身并不知道需要拷贝多少数据到新创建的goroutine的栈上去,所以需要用参数的方式指定拷贝多少数据。

了解完这些背景知识之后,下面我们开始分析newproc的代码。newproc函数是对newproc1的一个包装,这里最重要的准备工作有两个,一个是获取fn函数第一个参数的地址(代码中的argp),另一个是使用systemstack函数切换到g0栈,当然,对于我们这个初始化场景来说现在本来就在g0栈,所以不需要切换,然而这个函数是通用的,在用户的goroutine中也会创建goroutine,这时就需要进行栈的切换。

runtime/proc.go : 3232

// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.
//go:nosplit
func newproc(siz int32, fn *funcval) {
   //函数调用参数入栈顺序是从右向左,而且栈是从高地址向低地址增长的
    //注意:argp指向fn函数的第一个参数,而不是newproc函数的参数
   //参数fn在栈上的地址+8的位置存放的是fn函数的第一个参数
    argp := add(unsafe.Pointer(&fn), sys.PtrSize)
    gp:= getg()  //获取正在运行的g,初始化时是m0.g0
   
   //getcallerpc()返回一个地址,也就是调用newproc时由call指令压栈的函数返回地址,
   //对于我们现在这个场景来说,pc就是CALLruntime·newproc(SB)指令后面的POPQ AX这条指令的地址
    pc := getcallerpc()
   
   //systemstack的作用是切换到g0栈执行作为参数的函数
   //我们这个场景现在本身就在g0栈,因此什么也不做,直接调用作为参数的函数
    systemstack(func() {
        newproc1(fn, (*uint8)(argp), siz, gp, pc)
    })
}

 

newproc1函数的第一个参数fn是新创建的goroutine需要执行的函数,注意这个fn的类型是funcval结构体类型,其定义如下:

type  funcval struct{
    fn uintptr
    // variable-size, fn-specific data here
}

 

newproc1的第二个参数argp是fn函数的第一个参数的地址,第三个参数是fn函数的参数以字节为单位的大小,后面两个参数我们不用关心。这里需要注意的是,newproc1是在g0的栈上执行的。该函数很长也很重要,所以我们分段来看。

runtime/proc.go : 3248

// Create a new g running fn with narg bytes of arguments starting
// at argp. callerpc is the address of the go statement that created
// this. The new g is put on the queue of g's waiting to run.
func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
    //因为已经切换到g0栈,所以无论什么场景都有 _g_ = g0,当然这个g0是指当前工作线程的g0
    //对于我们这个场景来说,当前工作线程是主线程,所以这里的g0 = m0.g0
    _g_ := getg() 

    ......

    _p_ := _g_.m.p.ptr() //初始化时_p_ = g0.m.p,从前面的分析可以知道其实就是allp[0]
    newg := gfget(_p_) //从p的本地缓冲里获取一个没有使用的g,初始化时没有,返回nil
    if newg == nil {
         //new一个g结构体对象,然后从堆上为其分配栈,并设置g的stack成员和两个stackgard成员
        newg = malg(_StackMin)
        casgstatus(newg, _Gidle, _Gdead) //初始化g的状态为_Gdead
         //放入全局变量allgs切片中
        allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
    }
   
    ......
   
    //调整g的栈顶置针,无需关注
    totalSize := 4*sys.RegSize+uintptr(siz) +sys.MinFrameSize// extra space in case of reads slightly beyond frame
    totalSize += -totalSize&(sys.SpAlign-1)                  // align to spAlign
    sp := newg.stack.hi-totalSize
    spArg := sp

    ......
   
    if narg > 0 {
         //把参数从执行newproc函数的栈(初始化时是g0栈)拷贝到新g的栈
        memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
        // ......
    }

 

这段代码主要从堆上分配一个g结构体对象并为这个newg分配一个大小为2048字节的栈,并设置好newg的stack成员,然后把newg需要执行的函数的参数从执行newproc函数的栈(初始化时是g0栈)拷贝到newg的栈,完成这些事情之后newg的状态如下图所示:

我们可以看到,经过前面的代码之后,程序中多了一个我们称之为newg的g结构体对象,该对象也已经获得了从堆上分配而来的2k大小的栈空间,newg的stack.hi和stack.lo分别指向了其栈空间的起止位置。

接下来我们继续分析newproc1函数。

runtime/proc.go : 3314

 
//把newg.sched结构体成员的所有成员设置为0
    memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
   
    //设置newg的sched成员,调度器需要依靠这些字段才能把goroutine调度到CPU上运行。
    newg.sched.sp = sp //newg的栈顶
    newg.stktopsp = sp
    //newg.sched.pc表示当newg被调度起来运行时从这个地址开始执行指令
    //把pc设置成了goexit这个函数偏移1(sys.PCQuantum等于1)的位置,
    //至于为什么要这么做需要等到分析完gostartcallfn函数才知道
    newg.sched.pc = funcPC(goexit) + sys.PCQuantum// +PCQuantum so that previous instruction is in same function
    newg.sched.g = guintptr(unsafe.Pointer(newg))

    gostartcallfn(&newg.sched, fn)//调整sched成员和newg的栈

 

这段代码首先对newg的sched成员进行了初始化,该成员包含了调度器代码在调度goroutine到CPU运行时所必须的一些信息,其中sched的sp成员表示newg被调度起来运行时应该使用的栈的栈顶,sched的pc成员表示当newg被调度起来运行时从这个地址开始执行指令,然而从上面的代码可以看到,new.sched.pc被设置成了goexit函数的第二条指令的地址而不是fn.fn,这是为什么呢?要回答这个问题,必须深入到gostartcallfn函数中做进一步分析。

// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
func gostartcallfn(gobuf *gobuf, fv *funcval) {
    var fn unsafe.Pointer
    if fv != nil {
       fn = unsafe.Pointer(fv.fn) //fn: gorotine的入口地址,初始化时对应的是runtime.main
    } else {
        fn = unsafe.Pointer(funcPC(nilfunc))
    }
    gostartcall(gobuf, fn, unsafe.Pointer(fv))
}

 

gostartcallfn首先从参数fv中提取出函数地址(初始化时是runtime.main),然后继续调用gostartcall函数。

// adjust Gobuf as if it executed a call to fn with context ctxt
// and then did an immediate gosave.
func gostartcall(buf *gobuf, fn, ctxt unsafe.Pointer) {
    sp := buf.sp//newg的栈顶,目前newg栈上只有fn函数的参数,sp指向的是fn的第一参数
    if sys.RegSize > sys.PtrSize {
        sp -= sys.PtrSize
        *(*uintptr)(unsafe.Pointer(sp)) = 0
    }
    sp -= sys.PtrSize//为返回地址预留空间,
    //这里在伪装fn是被goexit函数调用的,使得fn执行完后返回到goexit继续执行,从而完成清理工作
    *(*uintptr)(unsafe.Pointer(sp)) = buf.pc//在栈上放入goexit+1的地址
    buf.sp = sp//重新设置newg的栈顶寄存器
    //这里才真正让newg的ip寄存器指向fn函数,注意,这里只是在设置newg的一些信息,newg还未执行,
   //等到newg被调度起来运行时,调度器会把buf.pc放入cpu的IP寄存器,
    //从而使newg得以在cpu上真正的运行起来
    buf.pc = uintptr(fn) 
    buf.ctxt = ctxt
}

 

gostartcall函数的主要作用有两个:

  1. 调整newg的栈空间,把goexit函数的第二条指令的地址入栈,伪造成goexit函数调用了fn,从而使fn执行完成后执行ret指令时返回到goexit继续执行完成最后的清理工作;

  2. 重新设置newg.buf.pc 为需要执行的函数的地址,即fn,我们这个场景为runtime.main函数的地址。

调整完成newg的栈和sched成员之后,返回到newproc1函数,我们继续往下看,

   
    newg.gopc = callerpc //主要用于traceback
    newg.ancestors = saveAncestors(callergp)
    //设置newg的startpc为fn.fn,该成员主要用于函数调用栈的traceback和栈收缩
    //newg真正从哪里开始执行并不依赖于这个成员,而是sched.pc
    newg.startpc = fn.fn 

    ......
   
   //设置g的状态为_Grunnable,表示这个g代表的goroutine可以运行了
    casgstatus(newg, _Gdead, _Grunnable)

    ......
   
    //把newg放入_p_的运行队列,初始化的时候一定是p的本地运行队列,其它时候可能因为本地队列满了而放入全局队列
    runqput(_p_, newg, true)

    ......
}

 

newproc1函数最后这点代码比较直观,首先设置了几个与调度无关的成员变量,然后修改newg的状态为_Grunnable并把其放入了运行队列,到此程序中第一个真正意义上的goroutine已经创建完成。

这时newg也就是main goroutine的状态如下图所示:

这个图看起来比较复杂,因为表示指针的箭头实在是太多了,这里对其稍作一下解释。

  • 首先,main goroutine对应的newg结构体对象的sched成员已经完成了初始化,图中只显示了pc和sp成员,pc成员指向了runtime.main函数的第一条指令,sp成员指向了newg的栈顶内存单元,该内存单元保存了runtime.main函数执行完成之后的返回地址,也就是runtime.goexit函数的第二条指令,预期runtime.main函数执行完返回之后就会去执行runtime.exit函数的CALL runtime.goexit1(SB)这条指令;

  • 其次,newg已经放入与当前主线程绑定的p结构体对象的本地运行队列,因为它是第一个真正意义上的goroutine,还没有其它goroutine,所以它被放在了本地运行队列的头部;

  • 最后,newg的m成员为nil,因为它还没有被调度起来运行,也就没有跟任何m进行绑定。

这一节我们分析了程序中第一个goroutine也就是main goroutine的创建,下一节我们继续分析它是怎么被主工作线程调度到CPU上去执行的。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!