LeetCode OJ 题解

删除回忆录丶 提交于 2020-01-03 09:09:31

 

博客搬至blog.csgrandeur.com,cnblogs不再更新。

新的题解会更新在新博客http://blog.csgrandeur.com/3/

————————————————————————————————————————

————————————————————————————————————————

LeetCode OJ 题解

LeetCode OJ is a platform for preparing technical coding interviews.

LeetCode OJ 是为与写代码有关的技术工作面试者设计的训练平台。

LeetCode OJ:http://oj.leetcode.com/

默认题目顺序为题目添加时间倒叙,本文题解顺序与OJ题目顺序一致(OJ会更新,至少目前一致。。。),目前共152题。

Made By:CSGrandeur

另外,Vimer做了Python版的题解:http://c4fun.cn/blog/2014/03/20/leetcode-solution-02/

————————————————————————————————————————

Maximum Product Subarray

 维护当前位置连续乘积的最大值 tmpp 和最小值 tmpn ,最大值和最小值都可能由三种情况得到:上一个数的 tmpp*A[i],上一个数的 tmpn*A[i],A[i]本身。

不断更新答案,最终输出。

 1 class Solution {
 2 public:
 3     int maxProduct(int A[], int n) {
 4         int tmpp = A[0], tmpn = A[0], tmp, ans = A[0];
 5         for(int i = 1; i < n; i ++)
 6         {
 7             tmp = tmpp;
 8             tmpp = max(max(A[i], A[i] * tmpp), A[i] * tmpn);
 9             tmpn = min(min(A[i], A[i] * tmp), A[i] * tmpn);
10             ans = max(ans, tmpp);
11         }
12         return ans;
13     }
14 };
View Code

 

Reverse Words in a String

 先翻转整个字符串,然后从前往后一个单词一个单词地再翻转一次,同时去除多余空格,等于是扫描两遍,O(n)。

 1 class Solution {
 2 public:
 3     void reverseWords(string &s) {
 4         reverse(s.begin(), s.end());
 5         int start = 0, end = 0, j = 0;
 6         while(start != s.length())
 7         {
 8             while(start != s.length() && s[start] == ' ') start ++;
 9             for(end = start; end != s.length() && s[end] != ' '; end ++);
10             if(j != 0 && start <= end - 1) s[j ++] = ' ';
11             for(int i = end - 1; start < i; start ++, i --)
12                 swap(s[i], s[start]), s[j ++] = s[start];
13             while(start < end) s[j ++] = s[start ++];
14         }
15         s.resize(j);
16     }
17 };
View Code

 

Evaluate Reverse Polish Notation

逆波兰表达式计算四则运算。用栈。

 1 class Solution {
 2 public:
 3     int evalRPN(vector<string> &tokens) {
 4         int a, b;
 5         stack<int> s;
 6         for(int i = 0; i < tokens.size(); i ++)
 7         {
 8             if(isdigit(tokens[i][0]) || tokens[i].length() > 1)
 9             {
10                 s.push(atoi(tokens[i].c_str()));
11                 continue;
12             }
13             a = s.top();s.pop();
14             b = s.top();s.pop();
15             switch(tokens[i][0])
16             {
17                 case '+': s.push(b + a); break;
18                 case '-': s.push(b - a); break;
19                 case '*': s.push(b * a); break;
20                 case '/': s.push(b / a); break;
21             }
22         }
23         return s.top();
24     }
25 };
View Code

 

Max Points on a Line

 平面上一条直线最多穿过多少点。乍一看好熟悉的问题,做了这么久计算几何。。。却还真没做过这个小问题。

第一反应当然不能O(n^3)枚举了,枚举圆周好像也不行,毕竟是考察所有点,不是某个点。那么应该就是哈希斜率了吧。

肯定少不了竖直的线,哈希斜率这不像是这类OJ让写的题吧。。忘了map这回事了。

确定思路之后,还是看看别人博客吧,少走点弯路,然后就学习了还有unordered_map这么个东西,还有一个博客的思路挺好,避免double问题,把斜率转化成化简的x、y组成字符串。

再另外就是重叠的点了,想让题目坑一点,怎能少得了这种数据,单独处理一下。

 1 /**
 2  * Definition for a point.
 3  * struct Point {
 4  *     int x;
 5  *     int y;
 6  *     Point() : x(0), y(0) {}
 7  *     Point(int a, int b) : x(a), y(b) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int maxPoints(vector<Point> &points) {
13         int ans = 0;
14         for(int i = 0; i < points.size(); i ++)
15         {
16             unordered_map<string, int> mp;
17             int tmpans = 0, same = 0;
18             for(int j = i + 1; j < points.size(); j ++)
19             {
20                 int x = points[j].x - points[i].x, y = points[j].y - points[i].y;
21                 int g = gcd(x, y);
22                 if(g != 0) x /= g, y /= g;
23                 else {same ++; continue;}
24                 if(x < 0) x = -x, y = -y;
25                 string tmp = to_string(x) + " " + to_string(y);
26                 if(!mp.count(tmp)) mp[tmp] = 1;
27                 else mp[tmp] ++;
28                 tmpans = max(tmpans, mp[tmp]);
29             }
30             ans = max(tmpans + 1 + same, ans);
31         }
32         return ans;
33     }
34     int gcd(int a, int b)
35     {
36         return a ? gcd(b % a, a) : b;
37     }
38 };
View Code

 

Sort List

 又长见识了,原来链表也可以O(nlogn)排序的。没往下想就查了一下,看到人说用归并,于是才开始想能不能实现。。。

O(n)找到中点,把中点的next变成NULL,对两部分递归。递归结束后对两部分归并,先找到newhead,即两部分的头部val较小的那个,然后归并就把小的从newhead往后续。

把最后的next赋值NULL,返回newhead。

又有空数据@_@.

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *sortList(ListNode *head) {
12         int n = 0;
13         ListNode *p = head;
14         while(p != NULL)
15             n ++, p = p->next;
16         if(n <= 1) return head;
17         n >>= 1;
18         p = head;
19         while(-- n)
20             p = p->next;
21         ListNode *tmp = p->next;
22         p->next = NULL;
23         ListNode *nl = sortList(head);
24         ListNode *nr = sortList(tmp);
25         ListNode *newhead;
26         if(nl->val < nr->val)
27         {
28             newhead = nl;
29             nl = nl->next;
30         }
31         else
32         {
33             newhead = nr;
34             nr = nr->next;
35         }
36         p = newhead;
37         while(nl != NULL && nr != NULL)
38         {
39             if(nl->val < nr->val) p->next = nl, p = p->next, nl = nl->next;
40             else p->next = nr, p = p->next, nr = nr->next;
41         }
42         while(nl != NULL) p->next = nl, p = p->next, nl = nl->next;
43         while(nr != NULL) p->next = nr, p = p->next, nr = nr->next;
44         p->next = NULL;
45         return newhead;
46     }
47 };
View Code

 

Insertion Sort List

 指针操作很烦啊。。暴力枚举插入位置,注意细节就能过了。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *insertionSortList(ListNode *head) {
12         ListNode *newhead = head;
13         if(head == NULL) return NULL;
14         head = head->next;
15         newhead->next = NULL;
16         while(head != NULL)
17         {
18             if(head->val < newhead->val)
19             {
20                 ListNode *tmp = head->next;
21                 head->next = newhead;
22                 newhead = head;
23                 head = tmp;
24                 continue;
25             }
26             ListNode *pre = newhead, *p = newhead->next;
27             while(p != NULL && p->val < head->val)
28             {
29                 p = p->next;
30                 pre = pre->next;
31             }
32             pre->next = head;
33             head = head->next;
34             pre = pre->next;
35             pre->next = p;
36         }
37         return newhead;
38     }
39     
40 };
View Code

 

LRU Cache

新建数据类class Val,保存key、val和访问自增标记updatecnt。

用unordered_map更新数据,增加updatecnt,并把更新的数据放入队列,最关键是处理capacity满了的时候,队列依次出队,map中不存在的和updatecnt和最新数据不相等的项目都忽略,直到发现updatecnt和map中存的最新状态相等,则为“最近未使用”数据,出队后在map中erase。思路有点像STL队列实现版本的Dijkstra。

有一个博客的方法更好,map中存的是链表的节点指针,链表顺序表示访问情况,这样就把map内容和链表的每个节点一一对应了,没有冗余节点,且更新操作也是O(1)的。

 1 class Val{
 2 public:
 3     int key;
 4     int val;
 5     int updatecnt;
 6 };
 7 class LRUCache{
 8 public:
 9     int cap;
10     unordered_map<int, Val> mp;
11     queue<Val> q;
12     LRUCache(int capacity) {
13         cap = capacity;
14     }
15 
16     int get(int key) {
17         if(mp.count(key))
18         {
19             mp[key].updatecnt ++;
20             q.push(mp[key]);
21             return mp[key].val;
22         }
23         return -1;
24     }
25 
26     void set(int key, int value) {
27         if(mp.count(key))
28         {
29             mp[key].val = value;
30             mp[key].updatecnt ++;
31             q.push(mp[key]);
32         }
33         else
34         {
35             if(mp.size() == cap)
36             {
37                 Val tmp;
38                 while(!q.empty())
39                 {
40                     tmp = q.front();
41                     q.pop();
42                     if(mp.count(tmp.key) && tmp.updatecnt == mp[tmp.key].updatecnt)
43                         break;
44                 }
45                 mp.erase(mp.find(tmp.key));
46                 mp[key].key = key;
47                 mp[key].val = value;
48                 mp[key].updatecnt = 0;
49                 q.push(mp[key]);
50             }
51             mp[key].key = key;
52             mp[key].val = value;
53             mp[key].updatecnt = 0;
54             q.push(mp[key]);
55         }
56     }
57 };
View Code

 

Binary Tree Postorder Traversal

 二叉树的非递归后序遍历,考研的时候非常熟悉了,现在写又要想好久。重点是关于右子树遍历时候需要一个标记,或者标记根节点出栈次数,或者标记右子树是否访问。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> postorderTraversal(TreeNode *root) {
13         vector<int> ans;
14         if(root == NULL) return ans;
15         stack<TreeNode*> s;
16         TreeNode *visited;
17         while(root != NULL || !s.empty())
18         {
19             while(root != NULL)
20                 s.push(root), root = root->left;
21             root = s.top();
22             if(root->right == NULL || visited == root->right)
23             {
24                 ans.push_back(root->val);
25                 s.pop();
26                 visited = root;
27                 root = NULL;
28             }
29             else
30             {
31                 root = root->right;
32             }
33         }
34         return ans;
35     }
36 };
View Code

 

Binary Tree Preorder Traversal

 前序遍历的非递归就容易多了。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> preorderTraversal(TreeNode *root) {
13         stack<TreeNode*> s;
14         vector<int> ans;
15         if(root == NULL) return ans;
16         s.push(root);
17         while(!s.empty())
18         {
19             root = s.top();
20             s.pop();
21             ans.push_back(root->val);
22             if(root->right != NULL) s.push(root->right);
23             if(root->left != NULL) s.push(root->left);
24         }
25     }
26 };
View Code

  

Reorder List

找到中间位置,把中间之后的链表反转,两个指针一个从头一个从尾开始互插,奇偶和指针绕得有点晕,理清就好了。。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     void reorderList(ListNode *head) {
12         int n = 0;
13         ListNode *pre, *p = head;
14         while(p)
15             n ++, p = p->next;
16         if(n < 3) return;
17         n >>= 1;
18         pre = p = head;
19         p = p->next;
20         while(n --) p = p->next, pre = pre->next;
21         while(p != NULL) 
22         {
23             ListNode *tmp = p->next;
24             p->next = pre;
25             pre = p;
26             p = tmp;
27         }
28         ListNode *tail = pre;
29         p = head;
30         while(true)
31         {
32             ListNode *tmp1 = p->next, *tmp2 = tail->next;
33             p->next = tail;
34             tail->next = tmp1;
35             p = tmp1;
36             if(p == tail || p == tmp2) break;
37             tail = tmp2;
38         }
39         p->next = NULL;
40     }
41 };
View Code

 

Linked List Cycle II

设置两个指针slow和fast,从head开始,slow一次一步,fast一次两步,如果fast能再次追上slow则有圈。

设slow走了n步,则fast走了2*n步,设圈长度m,圈起点到head距离为k,相遇位置距离圈起点为t,则有:

n = k + t + pm; (1)

2*n = k + t + qm;(2)

这里p和q是任意整数。(不过fast速度是slow二倍,则肯定在一圈内追上,p就是0了)

2 * (1) - (2) 得k = lm - t;(l = q - 2 * p)

 即 k 的长度是若干圈少了 t 的长度。

因此这时候,一个指针从head开始,另一个从相遇位置开始,都每次只走一步,当从head开始的指针走到圈开始位置时,两指针刚好相遇。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *detectCycle(ListNode *head) {
12         if(head == NULL) return NULL;
13         ListNode *slow, *fast;
14         slow = fast = head;
15         int n = 0;
16         do
17         {
18             n ++;
19             if(slow == NULL || fast == NULL) return NULL;
20             slow = slow->next;
21             fast = fast->next;
22             if(fast == NULL) return NULL;
23             fast = fast->next;
24             if(fast == NULL) return NULL;
25         }while(slow != fast);
26         fast = head;
27         while(slow != fast)
28             slow = slow->next, fast = fast->next;
29         return fast;
30     }
31 };
View Code

 

Linked List Cycle

 呃,时间逆序做的结果。。。成买一送一了。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     bool hasCycle(ListNode *head) {
12         if(head == NULL) return false;
13         ListNode *slow, *fast;
14         slow = fast = head;
15         int n = 0;
16         do
17         {
18             n ++;
19             if(slow == NULL || fast == NULL) return NULL;
20             slow = slow->next;
21             fast = fast->next;
22             if(fast == NULL) return NULL;
23             fast = fast->next;
24             if(fast == NULL) return NULL;
25         }while(slow != fast);
26         return true;
27     }
28 };
View Code

 

Word Break II

 先递推,dp[i] == true 表示 s 中前 i 个字符的串是符合要求的,枚举位置 i ,对于 i 枚举位置 j < i,如果 dp[j] == true且 j ~ i的串在字典中,则dp[i] = true。

同时对于这样的 j, i,site[i].push_back(j),即在 i 位置的可行迭代表中增加位置 j。

完成site之后,从尾部倒着DFS过去就得到了所有串。

 1 class Solution {
 2 public:
 3     vector<string> DFS(const string &s, vector<int> *site, int ith)
 4     {
 5         vector<string> res;
 6         for(int i = 0; i < site[ith].size(); i ++)
 7         {
 8             vector<string> tmp;
 9             string str = s.substr(site[ith][i], ith - site[ith][i]);
10             if(site[site[ith][i]].size() == 0)
11                 res.push_back(str);
12             else
13             {
14                 tmp = DFS(s, site, site[ith][i]);
15                 for(int j = 0; j < tmp.size(); j ++)
16                     res.push_back(tmp[j] + " " + str);
17             }
18         }
19         return res;
20     }
21     vector<string> wordBreak(string s, unordered_set<string> &dict) {
22         vector<int> *site = new vector<int>[s.length() + 1];
23         bool *dp = new bool[s.length() + 1];
24         memset(dp, 0, sizeof(bool) * s.length());
25         dp[0] = true;
26         for(int i = 1; i <= s.length(); i ++)
27         {
28             for(int j = 0; j < i; j ++)
29             {
30                 if(dp[j] == true && dict.count(s.substr(j, i - j)))
31                    site[i].push_back(j), dp[i] = true;
32             }
33         }
34         return DFS(s, site, s.length());
35     }
36 };
View Code

 

Word Break

 参考Word Break II,对于dp标记,当dp[i]为true时候可以停止枚举后面的 j,优化一下常数。

 1 class Solution {
 2 public:
 3     bool wordBreak(string s, unordered_set<string> &dict) {
 4         bool *dp = new bool[s.length() + 1];
 5         memset(dp, 0, sizeof(bool) * (s.length() + 1));
 6         dp[0] = true;
 7         for(int i = 1; i <= s.length(); i ++)
 8             for(int j = 0; j < i; j ++)
 9             {
10                 dp[i] = dp[i] || dp[j] && dict.count(s.substr(j, i - j));
11             }
12             return dp[s.length()];
13     }
14 };
View Code

 

Copy List with Random Pointer

第一次遍历,把每个节点复制一份放到对应节点的下一个,即组成二倍长的链表:ori1->copy1->ori2->copy2->....

第二次遍历,利用“复制节点总是对应节点的下一个节点”特性,将每个ori->next->random指向ori->random->next,中间判断一下空指针。

第三次遍历,把两个链表拆开,恢复原链表。

 1 /**
 2  * Definition for singly-linked list with a random pointer.
 3  * struct RandomListNode {
 4  *     int label;
 5  *     RandomListNode *next, *random;
 6  *     RandomListNode(int x) : label(x), next(NULL), random(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     RandomListNode *copyRandomList(RandomListNode *head) {
12         RandomListNode *p = head, *newhead = NULL, *tmp;
13         if(p == NULL) return NULL;
14         while(p != NULL)
15         {
16             tmp = new RandomListNode(p->label);
17             tmp->next = p->next;
18             p->next = tmp;
19             p = tmp->next;
20         }
21         newhead = head->next;
22         p = head;
23         while(p != NULL)
24         {
25             tmp = p->next;
26             tmp->random = p->random == NULL ? NULL : p->random->next;
27             p = tmp->next;
28         }
29         p = head;
30         while(p != NULL)
31         {
32             tmp = p->next;
33             p->next = tmp->next;
34             p = tmp->next;
35             tmp->next = p == NULL ? NULL : p->next;
36         }
37         return newhead;
38     }
39 };
View Code

 

Single Number II

方法一:设置cnt[32]记录 32个比特位的1的个数,出现3次的数的对应位的1总数为3的倍数,则统计之后每个位对3取模,剩下的位为1的则对应个数为1的那个数。

 1 class Solution {
 2 public:
 3     int singleNumber(int A[], int n) {
 4         int cnt[32] = {0};
 5         for(int i = 0; i < n; i ++)
 6         {
 7             int tmp = A[i];
 8             for(int j = 0; j < 33; tmp >>= 1, j ++)
 9                 cnt[j] += tmp & 1;
10         }
11         int ans = 0;
12         for(int i = 0; i < 32; i ++)
13             ans |= (cnt[i] % 3) << i;
14         return ans;
15     }
16 };
View Code

方法二:设置int one, two模拟两位二进制来统计各比特位1次数,每当one和two对应二进制位都为1的时候把one和two都清零,最后剩下的one就是要求的数。

 1 class Solution {
 2 public:
 3     int singleNumber(int A[], int n) {
 4         int one = 0, two = 0;
 5         for(int i = 0; i < n; i ++)
 6         {
 7             two |= one & A[i];
 8             one ^= A[i];
 9             int tmp = one & two;
10             two ^= tmp;
11             one ^= tmp;
12         }
13         return one;
14     }
15 };
View Code

 

Single Number

 一路异或过去就可以了。

1 class Solution {
2 public:
3     int singleNumber(int A[], int n) {
4         int tmp = 0;
5         for(int i = 0; i < n; i ++)
6             tmp ^= A[i];
7         return tmp;
8     }
9 };
View Code

 

Candy

时间复杂度 O(n)的方法还是容易想了,优化为空间复杂度O(1)的话也不难,只是思考代码的时候会有点绕。

上坡一步步来,下坡走个等差数列,波峰位置比较一下上坡时候记录的最大值和下坡求的的最大值,取较大的,具体看代码:

 1 class Solution {
 2 public:
 3     int candy(vector<int> &ratings) {
 4         int cnt = 0, i, j, start, nownum;
 5         for(i = 0; i < ratings.size(); i ++)
 6         {
 7             if(i == 0 || ratings[i] == ratings[i - 1])
 8                 nownum = 1;
 9             else if(ratings[i] > ratings[i - 1])
10                 nownum ++;
11             if(i + 1 < ratings.size() && ratings[i + 1] < ratings[i])
12             {
13                 start = 1;
14                 for(j = i + 1; j < ratings.size() && ratings[j] < ratings[j - 1]; start++, j ++);
15                 if(start > nownum)
16                     cnt += (start + 1) * start >> 1;
17                 else
18                     cnt += ((start - 1) * start >> 1) + nownum;
19                 nownum = 1;
20                 i = j - 1;
21             }
22             else 
23                 cnt += nownum;
24         }
25         return cnt;
26     }
27 };
View Code

 

Gas Station

 证明题。

一、如果从 i 到 j 的时候理论计算气量刚好为负数,则 i ~ j 的加气站都不可以作为起点。

反证一下,从前往后去掉站,如果去掉的站能增加气,即正数,则结果更糟。如果去掉的站是负数,那么负数如果抵消了之前的正数,则在到 j 之前已经负数了,如果不能抵消之前的正数,那么结果还是更糟。

二、判断是否能成行,一个环的和为非负就可以。

假设环为正, 0 ~ j 刚好为负, j + 1 ~ k 刚好为负数,k + 1 之后为正,则 k + 1 为答案。

也反证一下,k + 1 出发,到gas.size() - 1都为正,则转回来到 j - 1 都会为正。如果到 j 时候为负,则整个环不可能为正,所以到 j 的时候也为正,剩下的一样。这样就能够成功转一圈。

 1 class Solution {
 2 public:
 3     int canCompleteCircuit(vector<int> &gas, vector<int> &cost) {
 4        int i, ans, sum, all;
 5        for(i = ans = sum = all = 0; i < gas.size(); i ++)
 6        {
 7            sum += gas[i] - cost[i];
 8            all += gas[i] - cost[i];
 9            if(sum < 0)
10            {
11                sum = 0;
12                ans = i + 1;
13            }
14        }
15        return all >= 0 ? ans : -1;
16     }
17 };
View Code

 

Clone Graph

 label是唯一的,递归,用unordered_map标记。

 1 /**
 2  * Definition for undirected graph.
 3  * struct UndirectedGraphNode {
 4  *     int label;
 5  *     vector<UndirectedGraphNode *> neighbors;
 6  *     UndirectedGraphNode(int x) : label(x) {};
 7  * };
 8  */
 9 class Solution {
10 public:
11     unordered_map<int, UndirectedGraphNode *> mp;
12     UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
13         if(node == NULL || mp.count(node->label)) return NULL;
14         UndirectedGraphNode *tmp = new UndirectedGraphNode(node->label);
15         mp[node->label] = tmp;
16         for(int i = 0; i < node->neighbors.size(); i ++)
17         {
18             cloneGraph(node->neighbors[i]);
19             tmp->neighbors.push_back(mp[node->neighbors[i]->label]);
20         }
21         return tmp;
22     }
23 };
View Code

 

Palindrome Partitioning II

O(n^2)的动态规划。

cutdp[i] 表示前 i 个字符最小切割几次。

paldp[i][j] == true 表示 i ~ j 是回文。

在枚举 i 和 i 之前的所有 j 的过程中就得到了 paldp[j][i] 的所有回文判断,而对于 i + 1,paldp[j][i + 1]可由 s[j]、s[i + 1]、dp[j + 1][i]在O(1)判断。

cutdp[i]为所有 j (j < i),当paldp[j + 1][i] == true的 cutdp[j] + 1的最小值。注意一下边界。

 1 class Solution {
 2 public:
 3     int minCut(string s) {
 4         bool paldp[s.length()][s.length()];
 5         int cutdp[s.length()];
 6         for(int i = 0; i < s.length(); i ++)
 7         {
 8             cutdp[i] = 0x3f3f3f3f;
 9             for(int j = i - 1; j >= -1; j --)
10             {
11                 if(s.at(j + 1) == s.at(i) && (j + 2 >= i - 1 || paldp[j + 2][i - 1]))
12                 {
13                     paldp[j + 1][i] = true;
14                     cutdp[i] = min(cutdp[i], (j >= 0 ? (cutdp[j] + 1) : 0));
15                 }
16                 else
17                     paldp[j + 1][i] = false;
18                     
19             }
20         }
21         return cutdp[s.length() - 1];
22     }
23 };
View Code

 

Palindrome Partitioning

 O(n^2)动态规划,paldp[i][j]  == true表示 i ~ j 是回文。这里DP的方法是基本的,不再多说。

得到paldp之后,DFS一下就可以了。因为单字符是回文,所以DFS的终点肯定都是解,所以不必利用其他的结构存储答案信息。

 1 class Solution {
 2 public:
 3     vector<vector<string> >res;
 4     vector<string> tmp;
 5     bool **paldp;
 6     void DFS(string s, int ith)
 7     {
 8         if(ith == s.length())
 9         {
10             res.push_back(tmp);
11             return;
12         }
13         for(int i = ith; i < s.length(); i ++)
14         {
15             if(paldp[ith][i])
16             {
17                 tmp.push_back(s.substr(ith, i - ith + 1));
18                 DFS(s, i + 1);
19                 tmp.pop_back();
20             }
21         }
22         return;
23     }
24     vector<vector<string> > partition(string s) {
25         paldp = new bool*[s.length()];
26         for(int i = 0; i < s.length(); i ++)
27             paldp[i] = new bool[s.length()];
28         for(int i = 0; i < s.length(); i ++)
29             for(int j = i; j >= 0; j --)
30                 paldp[j][i] = s.at(i) == s.at(j) && (j + 1 >= i - 1 || paldp[j + 1][i - 1]);
31         DFS(s, 0);
32         return res;
33     }
34 };
View Code

 

Surrounded Regions

 周围四条边的O做起点搜索替换为第三种符号,再遍历所有符号把O换成X,第三种符号换回O。

 1 class Solution {
 2 public:
 3     typedef pair<int, int> pii;
 4     int dx[4] = {1, -1, 0, 0};
 5     int dy[4] = {0, 0, 1, -1};
 6     queue<pii> q;
 7     void solve(vector<vector<char> > &board) {
 8         if(board.size() == 0) return;
 9         int width = board[0].size();
10         int height = board.size();
11         for(int i = 0; i < width; i ++)
12         {
13             if(board[0][i] == 'O')
14                 board[0][i] = '#', q.push(pair<int, int>(0, i));
15             if(board[height - 1][i] == 'O')
16                 board[height - 1][i] = '#', q.push(pii(height - 1, i));
17         }
18         for(int i = 1; i < height - 1; i ++)
19         {
20             if(board[i][0] == 'O')
21                 board[i][0] = '#', q.push(pii(i, 0));
22             if(board[i][width - 1] == 'O')
23                 board[i][width - 1] = '#', q.push(pii(i, width - 1));
24         }
25         while(!q.empty())
26         {
27             pii now = q.front();
28             q.pop();
29             for(int i = 0; i < 4; i ++)
30             {
31                 int ty = now.first + dx[i];
32                 int tx = now.second + dy[i];
33                 if(tx >= 0 && tx < width && ty >= 0 && ty < height && board[ty][tx] == 'O')
34                 {
35                     board[ty][tx] = '#';
36                     q.push(pii(ty, tx));
37                 }
38             }
39         }
40         for(int i = 0; i < height; i ++)
41             for(int j = 0; j < width; j ++)
42             {
43                 if(board[i][j] == 'O') board[i][j] = 'X';
44                 else if(board[i][j] == '#') board[i][j] = 'O';
45             }
46     }
47 };
View Code

 

Sum Root to Leaf Numbers

 遍历一遍加起来。。。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int ans;
13     void DFS(TreeNode *now, int tmp)
14     {
15         if(now->left == NULL && now->right == NULL)
16         {
17             ans += tmp * 10 + now->val;
18             return;
19         }
20         if(now->left != NULL)
21         {
22             DFS(now->left, tmp * 10 + now->val);
23         }
24         if(now->right != NULL)
25         {
26             DFS(now->right, tmp * 10 + now->val);
27         }
28     }
29     int sumNumbers(TreeNode *root) {
30         if(root == NULL) return 0;
31         ans = 0;
32         DFS(root, 0);
33         return ans;
34     }
35 };
View Code

 

Longest Consecutive Sequence

 方法一:一开始竟然想了并查集,其实绕弯了,多此一举。哈希+并查集,把每个数哈希,枚举每个数看相邻的数在不在数组里,并查集合并,只是并查集的复杂度要比O(1)大一些。

 1 class Solution {
 2 public:
 3     unordered_map<int, int> mp, cnt;
 4     int ans = 1;
 5     int fa(int i)
 6     {
 7         i == mp[i] ? i : (mp[i] = fa(mp[i]));
 8     }
 9     int longestConsecutive(vector<int> &num) {
10         for(int i = 0; i < num.size(); i ++)
11             mp[num[i]] = num[i], cnt[num[i]] = 1;
12         for(int i = 0; i < num.size(); i ++)
13         {
14             if(mp.count(num[i] + 1) && fa(num[i]) != fa(num[i] + 1))
15             {
16                 cnt[fa(num[i] + 1)] += cnt[fa(num[i])];
17                 ans = max(cnt[fa(num[i] + 1)], ans);
18                 mp[fa(num[i])] = fa(num[i] + 1);
19             }
20         }
21         return ans;
22     }
23 };
View Code

方法二:哈希+枚举相邻数。相邻的数在数组里的话,每个数之多访问一次;相邻的数不在数组里的话,枚举会中断。所以设哈希复杂度为O(1)的话,这个方法是严格的O(n)。

其实这个题的数据挺善良,如果出了2147483647, -2147483648,那还是用long long 稳妥些。

 1 class Solution {
 2 public:
 3     unordered_map<int, bool> vis;
 4     int longestConsecutive(vector<int> &num) {
 5         int ans = 0;
 6         for(int i = 0; i < num.size(); i ++)
 7             vis[num[i]] = false;
 8         for(int i = 0; i < num.size(); i ++)
 9         {
10             if(vis[num[i]] == false)
11             {
12                 int cnt = 0;
13                 for(int j = num[i]; vis.count(j); j ++, cnt ++)
14                 {
15                     vis[j] = true;
16                 }
17                 for(int j = num[i] - 1; vis.count(j); j --, cnt ++)
18                 {
19                     vis[j] = true;
20                 }
21                 ans = max(ans, cnt);
22             }
23         }
24         
25         return ans;
26     }
27 };
View Code

 

 

Word Ladder II

 用数组类型的队列,BFS过程中记录pre路径,搜完后迭代回去保存路径。

似乎卡了常数,用queue队列,另外存路径的方法超时了。

想更快就双向广搜吧。让我想起了POJ那个八数码。

 1 class Node
 2 {
 3 public:
 4     string str;
 5     int pace;
 6     int pre;
 7     Node(){}
 8     Node(string s, int pa, int pr)
 9     {
10         str = s;
11         pace = pa;
12         pre = pr;
13     }
14 };
15 class Solution {
16 public:
17     vector<vector<string>> ans;
18     vector<vector<string>> findLadders(string start, string end, unordered_set<string> &dict) {
19         vector<Node> q;
20         q.push_back(Node(end, 1, -1));
21         unordered_map<string, int> dis;
22         dis[end] = 1;
23         for(int i = 0; i < q.size(); i ++)
24         {
25             Node now = q[i];
26             if(dis.count(start) && now.pace >= dis[start]) break;
27             for(int j = 0; j < now.str.length(); j ++)
28             {
29                 string tmp = now.str;
30                 for(char c = 'a'; c <= 'z'; c ++)
31                 {
32                     tmp[j] = c;
33                     if((dict.count(tmp) || tmp == start) && (!dis.count(tmp) || dis[tmp] == now.pace + 1))
34                     {
35                         dis[tmp] = now.pace + 1;
36                         q.push_back(Node(tmp, now.pace + 1, i));
37                     }
38                 }
39             }
40         }
41         for(int i = q.size() - 1; i >= 0 && q[i].pace == dis[start]; i --)
42         {
43             if(q[i].str == start)
44             {
45                 vector<string> tmp;
46                 for(int j = i; j != -1; j = q[j].pre)
47                     tmp.push_back(q[j].str);
48                 ans.push_back(tmp);
49             }
50         }
51         return ans;
52     }
53 };
View Code

 

Word Ladder

 直接BFS。

 1 class Solution {
 2 public:
 3     int ladderLength(string start, string end, unordered_set<string> &dict) {
 4         typedef pair<string, int> pii;
 5         unordered_set<string> flag;
 6         queue<pii> q;
 7         q.push(pii(start, 1));
 8         while(!q.empty())
 9         {
10             pii now = q.front();
11             q.pop();
12             for(int i = 0; i < now.first.length(); i ++)
13             {
14                 string tmp = now.first;
15                 for(char j = 'a'; j <= 'z'; j ++)
16                 {
17                     tmp[i] = j;
18                     if(tmp == end) return now.second + 1;
19                     if(dict.count(tmp) && !flag.count(tmp))
20                     {
21                         q.push(pii(tmp, now.second + 1));
22                         flag.insert(tmp);
23                     }
24                 }
25             }
26         }
27         return 0;
28     }
29 };
View Code

 

Valid Palindrome

 做过刘汝佳 白书的人想必都知道ctype.h和isdigit(), isalpha, tolower(), toupper()。

 1 class Solution {
 2 public:
 3     bool valid(char &x)
 4     {
 5         x = tolower(x);
 6         return isdigit(x) || isalpha(x);
 7     }
 8     bool isPalindrome(string s) {
 9         if(s.length() == 0) return true;
10         for(int i = 0, j = s.length() - 1; i < j; i ++, j --)
11         {
12             while(!valid(s[i]) && i < s.length()) i ++;
13             while(!valid(s[j]) && j >= 0) j --;
14             if(i < j && s[i] != s[j]) return false;
15         }
16         return true;
17     }
18 };
View Code

 

Binary Tree Maximum Path Sum

后续遍历,子问题为子树根节点向叶子节点出发的最大路径和。

即 l = DFS(now->left), r = DFS(now->right)。

此时,ans可能是 now->valid,可能是左边一路上来加上now->valid,可能是右边一路上来,也可能是左边上来经过now再右边一路下去,四种情况。

四种情况更新完ans后,now返回上一层只能是 now->valid或左边一路上来或右边一路上来,三种情况。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int ans;
13     int DFS(TreeNode *now)
14     {
15         if(now == NULL) return 0;
16         int l = max(DFS(now->left), 0);
17         int r = max(DFS(now->right), 0);
18         ans = max(ans, l + r + now->val);
19         return max(l + now->val, r + now->val);
20     }
21     int maxPathSum(TreeNode *root) {
22         if(root == NULL) return 0;
23         ans = -0x3f3f3f3f;
24         DFS(root);
25         return ans;
26     }
27 };
View Code

 

Best Time to Buy and Sell Stock III

 前缀pre[i]处理 0 ~ i 买卖一次最优解,后缀suf[i]处理 i ~ prices.size() - 1 买卖一次最优解。

所有位置pre[i] + suf[i]最大值为答案O(n)。

处理最优解的时候是维护前(后)缀prices最小(大)值,与当前prices做差后和前(后)缀最优解比较取最优,O(n)。

总复杂度O(n)。

 1 class Solution {
 2 public:
 3     int maxProfit(vector<int> &prices) {
 4         int ans = 0;
 5         vector<int> pre(prices.size()), suf(prices.size());
 6         for(int i = 0, mtmp = 0x3f3f3f3f; i < prices.size(); i ++)
 7         {
 8             mtmp = i ? min(mtmp, prices[i]) : prices[i];
 9             pre[i] = max(prices[i] - mtmp, i ? pre[i - 1] : 0);
10         }
11         for(int i = prices.size() - 1, mtmp = 0; i >= 0; i --)
12         {
13             mtmp = i != prices.size() - 1 ? max(mtmp, prices[i]) : prices[i];
14             suf[i] = max(mtmp - prices[i], i != prices.size() - 1 ? suf[i + 1] : 0);
15         }
16         for(int i = 0; i < prices.size(); i ++)
17             ans = max(ans, pre[i] + suf[i]);
18         return ans;
19     }
20 };
View Code

 

Best Time to Buy and Sell Stock II

 可以买卖多次,把所有上坡差累加即可。

 1 class Solution {
 2 public:
 3     int maxProfit(vector<int> &prices) {
 4         int ans = 0;
 5         for(int i = 1; i < prices.size(); i ++)
 6         {
 7             if(prices[i] > prices[i - 1])
 8                 ans += prices[i] - prices[i - 1];
 9         }
10         return ans;
11     }
12 };
View Code

 

Best Time to Buy and Sell Stock

 维护前(后)缀最小(大)值,和当前prices做差更新答案。

 1 class Solution {
 2 public:
 3     int maxProfit(vector<int> &prices) {
 4         int ans = 0;
 5         for(int i = prices.size() - 1, mtmp = 0; i >= 0; i --)
 6         {
 7             mtmp = max(mtmp, prices[i]);
 8             ans = max(mtmp - prices[i], ans);
 9         }
10         return ans;
11     }
12 };
View Code

 

Triangle

竟然遇到了ACM递推入门题,想必无数ACMer对这题太熟悉了。

从下往上递推,一维数组滚动更新即可。这里懒省事,直接把原数组改了。

 1 class Solution {
 2 public:
 3     int minimumTotal(vector<vector<int> > &triangle) {
 4         for(int i = triangle.size() - 2; i >= 0; i --)
 5         {
 6             for(int j = 0; j < triangle[i].size(); j ++)
 7                 triangle[i][j] = min(triangle[i][j] + triangle[i + 1][j], triangle[i][j] + triangle[i + 1][j + 1]);
 8         }
 9         return triangle.size() == 0 ? 0 : triangle[0][0];
10     }
11 };
View Code

 

Pascal's Triangle II

 滚动数组递推,从后往前以便不破坏上一层递推数据。

 1 class Solution {
 2 public:
 3     vector<int> getRow(int rowIndex) {
 4         vector<int> ans(rowIndex + 1, 0);
 5         ans[0] = 1;
 6         for(int i = 0; i <= rowIndex; i ++)
 7         {
 8             for(int j = i; j >= 0; j --)
 9             {
10                 ans[j] = (i == 0 || j == 0 || j == i ? 1 : ans[j] + ans[j - 1]);
11             }
12         }
13         return ans;
14     }
15 };
View Code

 

Pascal's Triangle

 递推。。

 1 class Solution {
 2 public:
 3     vector<vector<int> > generate(int numRows) {
 4         vector<vector<int> > v;
 5         for(int i = 0; i < numRows; i ++)
 6         {
 7             vector<int> tmp;
 8             for(int j = 0; j <= i; j ++)
 9             {
10                 tmp.push_back(i == 0 || j == 0 || j == i ? 1 : v[i - 1][j] + v[i - 1][j - 1]);
11             }
12             v.push_back(tmp);
13         }
14         return v;
15     }
16 };
View Code

 

Populating Next Right Pointers in Each Node II

 题目要求空间复杂度O(1),所以递归、队列等传统方法不应该用。

本题可以利用生成的next指针来横向扫描,即得到一层的next指针之后,可以利用这一层的next指针来给下一层的next指针赋值。

 1 /**
 2  * Definition for binary tree with next pointer.
 3  * struct TreeLinkNode {
 4  *  int val;
 5  *  TreeLinkNode *left, *right, *next;
 6  *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     TreeLinkNode *findNext(TreeLinkNode *head)
12     {
13         while(head != NULL && head->left == NULL && head->right == NULL)
14             head = head->next;
15         return head;
16     }
17     void connect(TreeLinkNode *root) {
18         if(root == NULL) return;
19         TreeLinkNode *head, *last, *nexhead;
20         for(head = root; head != NULL; head = nexhead)
21         {
22             head = findNext(head);
23             if(head == NULL) break;
24             if(head->left != NULL) nexhead = head->left;
25             else nexhead = head->right;
26             for(last = NULL; head != NULL; last = head, head = findNext(head->next))
27             {
28                 if(head->left != NULL && head->right != NULL)
29                     head->left->next = head->right;
30                 if(last == NULL) continue;
31                 if(last->right != NULL) 
32                     last->right->next = head->left != NULL ? head->left : head->right;
33                 else 
34                     last->left->next = head->left != NULL ? head->left : head->right;
35             }
36         }
37     }
38 };
View Code

 

Populating Next Right Pointers in Each Node

 不用考虑连续的空指针,就不用额外实现找下一个子树非空节点,比Populating Next Right Pointers in Each Node II 容易处理。

 1 /**
 2  * Definition for binary tree with next pointer.
 3  * struct TreeLinkNode {
 4  *  int val;
 5  *  TreeLinkNode *left, *right, *next;
 6  *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     void connect(TreeLinkNode *root) {
12         if(root == NULL) return;
13         TreeLinkNode *head, *nexhead, *last;
14         for(head = root; head->left != NULL; head = nexhead)
15         {
16             nexhead = head->left;
17             last = NULL;
18             while(head != NULL)
19             {
20                 head->left->next = head->right;
21                 if(last != NULL) last->right->next = head->left;
22                 last = head;
23                 head = head->next;
24             }
25         }
26     }
27 };
View Code

 

Distinct Subsequences

 典型动态规划。dp[i][j] 表示 T 的前 j 个字符在 S 的前 i 个字符中的解。

对于dp[i + 1][j + 1],由两部分组成:

一、 j + 1 对应到 S 前 i 个字符中的解,忽略 S 的第 i + 1 个字符。

二、判断 S 的第 i + 1 个字符是否和 T 的第 j + 1 个字符相同,如果相同,则加上dp[i][j],否则不加。

 1 class Solution {
 2 public:
 3     int numDistinct(string S, string T) {
 4         if(S.length() < T.length()) return 0;
 5         vector<vector<int> > dp(S.length() + 1, vector<int>(T.length() + 1, 0));
 6         for(int i = 0; i < S.length(); i ++) dp[i][0] = 1;
 7         dp[0][1] = 0;
 8         for(int i = 0; i < S.length(); i ++)
 9         {
10             for(int j = 0; j < T.length(); j ++)
11             {
12                 dp[i + 1][j + 1] = dp[i][j + 1];
13                 if(S[i] == T[j]) dp[i + 1][j + 1] += dp[i][j];
14             }
15         }
16         return dp[S.length()][T.length()];
17     }
18 };
View Code

 

Flatten Binary Tree to Linked List

 题意是优先左子树靠前,且排成一列用右子树指针,不管val的大小关系。

后序遍历一遍即可,递归返回子树中尾节点指针,注意各种条件判断。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     TreeNode *DFS(TreeNode *now)
13     {
14         if(now->left == NULL && now->right == NULL) return now;
15         TreeNode *leftok = NULL, *rightok = NULL;
16         if(now->left != NULL) leftok = DFS(now->left);
17         if(now->right != NULL) rightok = DFS(now->right);
18         if(leftok != NULL)
19         {
20             leftok->right = now->right;
21             now->right = now->left;
22             now->left = NULL;
23             return rightok ? rightok : leftok;
24         }
25         else return rightok;
26     }
27     void flatten(TreeNode *root) {
28         if(root == NULL) return;
29         DFS(root);
30     }
31 };
View Code

 

Path Sum II

 传统递归,把路径上的数字插入vector,终点判断是否插入答案。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int goal;
13     vector<vector<int> >v;
14     vector<int> curv;
15     void DFS(TreeNode *now, int cursum)
16     {
17         curv.push_back(now->val);
18         if(now->left == NULL && now->right == NULL) 
19         {
20             if(cursum + now->val == goal)
21             {
22                 v.push_back(curv);
23                 curv.pop_back();
24                 return;
25             }
26         }
27         if(now->left != NULL) DFS(now->left, cursum + now->val);
28         if(now->right != NULL) DFS(now->right, cursum + now->val);
29         curv.pop_back();
30     }
31     vector<vector<int> > pathSum(TreeNode *root, int sum) {
32         goal = sum;
33         if(root == NULL) return v;
34         DFS(root, 0);
35         return v;
36     }
37 };
View Code

Path Sum

遍历树。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int goal;
13     bool DFS(TreeNode *now, int cursum)
14     {
15         if(now->left == NULL && now->right == NULL) 
16             return cursum + now->val == goal;
17         if(now->left != NULL && DFS(now->left, cursum + now->val)) return true;
18         if(now->right != NULL && DFS(now->right, cursum + now->val)) return true;
19     }
20     bool hasPathSum(TreeNode *root, int sum) {
21         goal = sum;
22         if(root == NULL) return false;
23         return DFS(root, 0);
24     }
25 };
View Code

 

Minimum Depth of Binary Tree

 还是遍历。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int minDepth(TreeNode *root) {
13         if(root == NULL) return 0;
14         if(root->left == NULL) return minDepth(root->right) + 1;
15         else if(root->right == NULL) return minDepth(root->left) + 1;
16         else return min(minDepth(root->left), minDepth(root->right)) + 1;
17     }
18 };
View Code

 

Balanced Binary Tree

遍历。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int maxDepth(TreeNode *now)
13     {
14         if(now == NULL) return 0;
15         int l = maxDepth(now->left) + 1;
16         int r = maxDepth(now->right) + 1;
17         return abs(l - r) > 1 || l < 0 || r < 0 ? -2 : max(l, r);
18     }
19     bool isBalanced(TreeNode *root) {
20         return maxDepth(root) >= 0;
21     }
22 };
View Code

 

Convert Sorted List to Binary Search Tree

每次找中点作为根节点,将两边递归,返回根节点指针作为左右节点。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 /**
10  * Definition for binary tree
11  * struct TreeNode {
12  *     int val;
13  *     TreeNode *left;
14  *     TreeNode *right;
15  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
16  * };
17  */
18 class Solution {
19 public:
20     TreeNode *sortedListToBST(ListNode *head) {
21         if(head == NULL) return NULL;
22         ListNode *p, *mid, *pre;
23         for(p = mid = head, pre = NULL; p->next != NULL; mid = mid->next)
24         {
25             p = p->next;
26             if(p->next == NULL) break;
27             p = p->next;
28             pre = mid;
29         };
30         TreeNode *root = new TreeNode(mid->val);
31         if(pre != NULL) pre->next = NULL, root->left = sortedListToBST(head);
32         else root->left = NULL;
33         root->right = sortedListToBST(mid->next);
34         if(pre != NULL) pre->next = mid;
35         return root;
36     }
37 };
View Code

  

Convert Sorted Array to Binary Search Tree

 递归做,比链表的容易些。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     TreeNode *convert(vector<int> &num, int left, int right)
13     {
14         if(right == left) return NULL;
15         int mid = right + left >> 1;
16         TreeNode *root = new TreeNode(num[mid]);
17         root->left = convert(num, left, mid);
18         root->right = convert(num, mid + 1, right);
19     }
20     TreeNode *sortedArrayToBST(vector<int> &num) {
21         return convert(num, 0, num.size());
22     }
23 };
View Code

  

Binary Tree Level Order Traversal II

 宽搜和深搜都可以,找对层数就行了。

本以为这题亮点是如何一遍实现从底向上顺序的vector,AC之后上网一查也全是最后把vector翻转的。。。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * }; 
 9  */
10 class Solution {
11 public:
12     vector<vector<int> >v;
13     void DFS(TreeNode *now, int depth)
14     {
15         if(v.size() <= depth) v.push_back(vector<int>(0));
16         v[depth].push_back(now->val);
17         if(now->left != NULL) DFS(now->left, depth + 1);
18         if(now->right != NULL) DFS(now->right, depth + 1);
19     }
20     vector<vector<int> > levelOrderBottom(TreeNode *root) {
21         if(root == NULL) return v;
22         DFS(root, 0);
23         for(int i = 0, j = v.size() - 1; i < j; i ++, j --)
24             swap(v[i], v[j]);
25         return v;
26     }
27 };
View Code

 

Construct Binary Tree from Inorder and Postorder Traversal

 

数据结构经典题。后序遍历的结尾是根节点 Proot,在中序遍历中找到这个节点 Iroot,则 Iroot两边即为左右子树。根据左右子树节点个数,在后序遍历中找到左右子树分界(左右子树肯定不交叉),则几个关键分界点都找到了,对左右子树递归。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     TreeNode *build(vector<int> &inorder, int ileft, int iright, vector<int> &postorder, int pleft, int pright)
13     {
14         if(iright == ileft)
15             return NULL;
16         int root;
17         for(root = ileft; inorder[root] != postorder[pright - 1]; root ++);
18         TreeNode *node = new TreeNode(inorder[root]);
19         node->left = build(inorder, ileft, root, postorder, pleft, pleft + root - ileft);
20         node->right = build(inorder, root + 1, iright, postorder, pleft + root - ileft, pright - 1);
21         return node;
22     }
23     TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
24         return build(inorder, 0, inorder.size(), postorder, 0, postorder.size());
25     }
26 };
View Code

 

Construct Binary Tree from Preorder and Inorder Traversal

 和上一题Construct Binary Tree from Inorder and Postorder Traversal方法一样,前序和后序的信息作用相同。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     TreeNode *build(vector<int> &inorder, int ileft, int iright, vector<int> &preorder, int pleft, int pright)
13     {
14         if(iright == ileft)
15             return NULL;
16         int root;
17         for(root = ileft; inorder[root] != preorder[pleft]; root ++);
18         TreeNode *node = new TreeNode(inorder[root]);
19         node->left = build(inorder, ileft, root, preorder, pleft + 1, pleft + root - ileft);
20         node->right = build(inorder, root + 1, iright, preorder, pleft + root - ileft + 1, pright);
21         return node;
22     }
23     TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
24         return build(inorder, 0, inorder.size(), preorder, 0, preorder.size());
25         
26     }
27 };
View Code

 

Maximum Depth of Binary Tree

 遍历。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     int maxDepth(TreeNode *root) {
13         if(root == NULL) return 0;
14         if(root->left == NULL) return maxDepth(root->right) + 1;
15         if(root->right == NULL) return maxDepth(root->left) + 1;
16         return max(maxDepth(root->left), maxDepth(root->right)) + 1;
17     }
18 };
View Code

 

Binary Tree Zigzag Level Order Traversal

 BFS,奇偶层轮流走,一层左到右,一层右到左。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<vector<int> > ans;
13     vector<vector<int> > zigzagLevelOrder(TreeNode *root) {
14         if(root == NULL) return ans;
15         vector<TreeNode*> q1, q2;
16         q1.push_back(root);
17         int depth = 0;
18         while(!q1.empty() || !q2.empty())
19         {
20             ans.push_back(vector<int>(0));
21             for(int i = q1.size() - 1; i >= 0; i --)
22             {
23                 ans[depth].push_back(q1[i]->val);
24                 if(q1[i]->left != NULL) q2.push_back(q1[i]->left);
25                 if(q1[i]->right != NULL) q2.push_back(q1[i]->right);
26             }
27             depth ++;
28             q1.clear();
29             if(q2.empty()) continue;
30             ans.push_back(vector<int>(0));
31             for(int i = q2.size() - 1; i >= 0; i --)
32             {
33                 ans[depth].push_back(q2[i]->val);
34                 if(q2[i]->right != NULL) q1.push_back(q2[i]->right);
35                 if(q2[i]->left != NULL) q1.push_back(q2[i]->left);
36             }
37             q2.clear();
38             depth ++;
39         }
40         return ans;
41     }
42 };
View Code

 

Binary Tree Level Order Traversal

 懒省事直接在上一题Binary Tree Zigzag Level Order Traversal的代码上改了一下。

只用一个队列的话,增加个层数信息存队列里即可。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<vector<int> > ans;
13     vector<vector<int> > levelOrder(TreeNode *root) {
14  if(root == NULL) return ans;
15         vector<TreeNode*> q1, q2;
16         q1.push_back(root);
17         int depth = 0;
18         while(!q1.empty() || !q2.empty())
19         {
20             ans.push_back(vector<int>(0));
21             for(int i = 0; i < q1.size(); i ++)
22             {
23                 ans[depth].push_back(q1[i]->val);
24                 if(q1[i]->left != NULL) q2.push_back(q1[i]->left);
25                 if(q1[i]->right != NULL) q2.push_back(q1[i]->right);
26             }
27             depth ++;
28             q1.clear();
29             if(q2.empty()) continue;
30             ans.push_back(vector<int>(0));
31             for(int i = 0; i < q2.size(); i ++)
32             {
33                 ans[depth].push_back(q2[i]->val);
34                 if(q2[i]->left != NULL) q1.push_back(q2[i]->left);
35                 if(q2[i]->right != NULL) q1.push_back(q2[i]->right);
36             }
37             q2.clear();
38             depth ++;
39         }
40         return ans;
41     }
42 };
View Code

 

Symmetric Tree

递归:左指针和右指针,对称递归,即“左的左”和“右的右”对应,“左的右”和“右的左”对应。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     bool judge(TreeNode *l, TreeNode *r)
13     {
14         if(l->val != r->val) return false;
15         if(l->left != r->right && (l->left == NULL || r->right == NULL)
16         || l->right != r->left && (l->right == NULL || r->left == NULL))
17             return false;
18         if(l->left != NULL && !judge(l->left, r->right)) return false;
19         if(l->right != NULL && !judge(l->right, r->left)) return false;
20         return true;
21     }
22     bool isSymmetric(TreeNode *root) {
23         if(root == NULL) return true;
24         if(root->left == NULL && root->right == NULL) return true;
25         else if(root->left != NULL && root->right == NULL
26             || root->left == NULL && root->right != NULL) return false;
27         return judge(root->left, root->right);
28     }
29 };
View Code

非递归:左右子树分别做一个队列,同步遍历。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     bool isSymmetric(TreeNode *root) {
13         if(root == NULL) return true;
14         if(root->left == NULL && root->right == NULL) return true;
15         else if(root->left != NULL && root->right == NULL
16             || root->left == NULL && root->right != NULL) return false;
17         queue<TreeNode *> q1, q2;
18         q1.push(root->left);
19         q2.push(root->right);
20         while(!q1.empty())
21         {
22             TreeNode *now1 = q1.front(), *now2 = q2.front();
23             q1.pop();
24             q2.pop();
25             if(now1->val != now2->val) return false;
26             if(now1->left != NULL || now2->right != NULL)
27             {
28                 if(now1->left == NULL || now2->right == NULL) return false;
29                 q1.push(now1->left);
30                 q2.push(now2->right);
31             }
32             if(now1->right != NULL || now2->left != NULL)
33             {
34                 if(now1->right == NULL || now2->left == NULL) return false;
35                 q1.push(now1->right);
36                 q2.push(now2->left);
37             }
38         }
39         return true;
40     }
41 };
View Code

 

Same Tree

 同步遍历,比较判断。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     bool isSameTree(TreeNode *p, TreeNode *q) {
13         if(p == NULL && q == NULL) return true;
14         if(p != q && (p == NULL || q == NULL) || p->val != q->val) return false;
15         return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
16     }
17 };
View Code

 

Recover Binary Search Tree

 中序遍历是二叉查找树的顺序遍历,*a, *b表示前驱节点和当前节点,因为只有一对数值翻转了,所以肯定会遇到前驱节点val比当前节点val大的情况一次或两次,遇到一次表示翻转的是相邻的两个节点。*ans1和*ans2指向两个被翻转的节点,当遇到前驱val比当前val大的情况时候,根据第一次还是第二次给ans1和ans2赋值,最终翻转回来。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     TreeNode *a, *b;
13     TreeNode *ans1, *ans2;
14     bool DFS(TreeNode *now)
15     {
16         if(now->left != NULL)
17             DFS(now->left);
18         a = b;
19         b = now;
20         if(a != NULL && a->val > b->val)
21         {
22             if(ans1 == NULL) ans1 = a;
23             ans2 = b;
24         }
25         if(now->right != NULL)
26             DFS(now->right);
27     }
28     void recoverTree(TreeNode *root) {
29         if(root == NULL) return;
30         a = b = ans1 = ans2 = NULL;
31         DFS(root);
32         swap(ans1->val, ans2->val);
33     }
34 };
View Code

 

Validate Binary Search Tree

 中序遍历,更新前驱节点,与当前节点比较。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     TreeNode *pre = NULL;
13     bool isValidBST(TreeNode *root) {
14         if(root == NULL) return true;
15         if(root->left != NULL && !isValidBST(root->left)) return false;
16         if(pre != NULL && pre->val >= root->val) return false;
17         pre = root;
18         if(root->right != NULL && !isValidBST(root->right)) return false;
19         return true;
20     }
21 };
View Code

 

Interleaving String

 动态规划。如果结果是true,则任意 i, j,s1 i 之前的字符 和 s2 j 之前的字符,都能够交叉为 s3 i + j 之前的字符。

由此,当dp[i][j]时,如果s1[i]==s3[i+j],则尝试s1[i]与s3[i+j]对应,如果dp[i-1][j]是true,则dp[i][j]也为true。如果s2[j]==s3[i+j]则同样处理。

直到最后,判断dp[s1.length()-1][s2.length()-1]是否为true。为方便初始化,坐标后移了一位。

题目不厚道的出了s1.length()+s2.length() != s3.length()的数据,特判一下。

看到网上也都是O(n^2)的解法,我也就放心了。。。

 1 class Solution {
 2 public:
 3     bool isInterleave(string s1, string s2, string s3) {
 4         if(s1.length() + s2.length() != s3.length()) return false;
 5         vector<vector<bool> > dp(s1.length() + 1, vector<bool>(s2.length() + 1, false));
 6         for(int i = 0; i <= s1.length(); i ++)
 7             for(int j = 0; j <= s2.length(); j ++)
 8             {
 9                 if(!i && !j) dp[i][j] = true;
10                 dp[i][j] = dp[i][j] || i > 0 && s3[i + j - 1] == s1[i - 1] && dp[i - 1][j];
11                 dp[i][j] = dp[i][j] || j > 0 && s3[i + j - 1] == s2[j - 1] && dp[i][j - 1];
12             }
13         return dp[s1.length()][s2.length()];
14     }
15 };
View Code

 

Unique Binary Search Trees II

LeetCode目前为止感觉最暴力的。递归遍历所有情况,每次返回子问题(左右子树)的vector<TreeNode *>的解,两层循环组合这些解。

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<TreeNode *> generate(int start, int end)
13     {
14         vector<TreeNode *>res;
15         if(start > end)
16         {
17             TreeNode *tmp = NULL;
18             res.push_back(tmp);
19             return res;
20         }
21         for(int i = start; i <= end; i ++)
22         {
23             vector<TreeNode *> l = generate(start, i - 1), r = generate(i + 1, end);
24             for(int j = 0; j < l.size(); j ++)
25                 for(int k = 0; k < r.size(); k ++)
26                 {
27                     TreeNode *tmp = new TreeNode(i);
28                     tmp->left = l[j];
29                     tmp->right = r[k];
30                     res.push_back(tmp);
31                 }
32         }
33         return res;
34     }
35     vector<TreeNode *> generateTrees(int n) {
36         return generate(1, n);
37     }
38 };
View Code

 

Unique Binary Search Trees

 经典问题,卡特兰数,可递推,可用公式(公式用组合数,也要写循环)。

 1 class Solution {
 2 public:
 3     int COM(int n, int m)
 4     {
 5         m = n - m < m ? n - m : m;
 6         int res, i, j;
 7         for(i = n, res = j = 1; i > n - m; i --)
 8         {
 9             res *= i;
10             for(; j <= m && res % j == 0; j ++)
11                 res /= j;
12         }
13         return res;
14     }
15     int numTrees(int n) {
16         return COM(n << 1, n) / (n + 1);
17 
18     }
19 };
View Code

 

Binary Tree Inorder Traversal

 数据结构基础

 1 /**
 2  * Definition for binary tree
 3  * struct TreeNode {
 4  *     int val;
 5  *     TreeNode *left;
 6  *     TreeNode *right;
 7  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<int> res;
13     void inorder(TreeNode *now)
14     {
15         if(now == NULL) return;
16         inorder(now->left);
17         res.push_back(now->val);
18         inorder(now->right);
19     }
20     vector<int> inorderTraversal(TreeNode *root) {
21         inorder(root);
22         return res;
23     }
24 };
View Code

 

Restore IP Addresses

四层递归枚举分割位置,判断数字范围和前导零,处理字符串。

 1 class Solution {
 2 public:
 3     vector<string> res;
 4     void DFS(string s, int last, int cur, string now)
 5     {
 6         if(cur == 3)
 7         {
 8             if(last == s.length()) return;
 9             string tmp = s.substr(last, s.length() - last);
10             if(atoi(tmp.c_str()) <= 255 && (tmp.length() == 1 || tmp[0] != '0'))
11                 res.push_back(now + tmp);
12             return;
13         }
14         string lin;
15         for(int i = last; i < s.length(); i ++)
16         {
17             string tmp = s.substr(last, i - last + 1);
18             if(atoi(tmp.c_str()) <= 255 && (tmp.length() == 1 || tmp[0] != '0'))
19                 DFS(s, i + 1, cur + 1, now + tmp + ".");
20         }
21     }
22     vector<string> restoreIpAddresses(string s) {
23         DFS(s, 0, 0, "");
24         return res;
25     }
26 };
View Code

 

Reverse Linked List II

 在表头添加一个“哨兵”会好写很多,额外的newhead可以帮助标记翻转之后更换了的头指针。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *reverseBetween(ListNode *head, int m, int n) {
12         ListNode *newhead = new ListNode(0);
13         newhead->next = head;
14         ListNode *pre = newhead, *p = head, *start = NULL;
15         ListNode *tmp;
16         for(int i = 1; p != NULL; i ++)
17         {
18             tmp = p->next;
19             if(i == m)
20                 start = pre;
21             if(i > m && i <= n)
22                 p->next = pre;
23             if(i == n)
24             {
25                 start->next->next = tmp;
26                 start->next = p;
27             }
28             pre = p;
29             p = tmp;
30         }
31         tmp = newhead->next;
32         free(newhead);
33         return tmp;
34     }
35 };
View Code

 

Subsets II

统计地存map里,map[i]= j 表示 S 中有 j 个 i。map是有序的,用迭代器递归枚举放入集合的个数。

也可以先排序,用set标记每个数时候被放入过,第一次放入之后才可以继续放同一个数。

代码是用map的方法。

 1 class Solution {
 2 public:
 3     vector<vector<int> > res;
 4     vector<int> now;
 5     map<int, int> mp;
 6     void DFS(map<int, int>::iterator i)
 7     {
 8         if(i == mp.end())
 9         {
10             res.push_back(now);
11             return;
12         }
13         map<int, int>::iterator tmp = i;
14         i ++;
15         DFS(i);
16         for(int j = 0; j < tmp->second; j ++)
17         {
18             now.push_back(tmp->first);
19             DFS(i);
20         }
21         for(int j = 0; j < tmp->second; j ++)
22             now.pop_back();
23     }
24     vector<vector<int> > subsetsWithDup(vector<int> &S) {
25         for(int i = 0; i < S.size(); i ++)
26             !mp.count(S[i]) ? (mp[S[i]] = 1) : mp[S[i]] ++;
27         DFS(mp.begin());
28         return res;
29     }
30 };
View Code

 

Decode Ways

递推:dp[i]表示前 i 个数字的解码种数。

dp[i]  = if(一)dp[i-1] + if(二)dp[i-2]

当 i 位置不为0,可加上 i - 1 位置的解。当当前位置和前一位置组成的两位数满足解码且高位不为0,可加上 i - 2 位置的解。

 1 class Solution {
 2 public:
 3     int numDecodings(string s) {
 4         if(s.length() == 0) return 0;
 5         vector<int> dp(s.length() + 1, 0);
 6         dp[0] = 1;
 7         for(int i = 0; i < s.length(); i ++)
 8         {
 9             dp[i + 1] = (s[i] != '0' ? dp[i] : 0) +
10                 (i > 0 && s[i - 1] != '0' && atoi(s.substr(i - 1, 2).c_str()) <= 26 ? dp[i - 1] : 0);
11         }
12         return dp[s.length()];
13     }
14 };
View Code

 

Gray Code

格雷码有多种生成方法,可参考维基百科

1 class Solution {
2 public:
3     vector<int> grayCode(int n) {
4         vector<int> res;
5         for(int i = 0; i < (1 << n); i ++)
6             res.push_back((i >> 1) ^ i);
7         return res;
8     }
9 };
View Code

 

Merge Sorted Array

 从后往前,对 A 来说一个萝卜一个坑,肯定不会破坏前面的数据。具体看代码。

 1 class Solution {
 2 public:
 3     void merge(int A[], int m, int B[], int n) {
 4         int p = m + n - 1, i = m - 1, j = n - 1;
 5         for(; i >= 0 && j >= 0;)
 6         {
 7             if(A[i] > B[j]) A[p --] = A[i --];
 8             else A[p --] = B[j --];
 9         }
10         while(i >= 0) A[p --] = A[i --];
11         while(j >= 0) A[p --] = B[j --];
12     }
13 };
View Code

 

Scramble String

 直接搜索可以过,记忆化搜索可提高效率。

 dp[i][j][k]表示从 s1[i] 和 s2[j] 开始长度为 k 的字符串是否是scrambled string

枚举分割位置,scrambled string要求字符串对应字母的个数是一致的,可以直接排序对比。递归终点是刚好只有一个字母。

 1 class Solution {
 2 public:
 3     string S1, S2;
 4     vector<vector<vector<int> > > dp;
 5     bool judge(string a, string b)
 6     {
 7         sort(a.begin(), a.end());
 8         sort(b.begin(), b.end());
 9         for(int i = 0; i < a.length(); i ++)
10             if(a[i] != b[i]) return false;
11         return true;
12     }
13     int DFS(int s1start, int s2start, int len)
14     {
15         int &ans = dp[s1start][s2start][len - 1];
16         if(len == 1) return ans = S1[s1start] == S2[s2start];
17         if(ans != -1) return ans;
18         if(!judge(S1.substr(s1start, len), S2.substr(s2start, len))) return ans = 0;
19         ans = 0;
20         for(int i = 1; i < len; i ++)
21         {
22             ans = ans 
23             || DFS(s1start, s2start, i) && DFS(s1start + i, s2start + i, len - i)
24             || DFS(s1start, s2start + len - i, i) && DFS(s1start + i, s2start, len - i);
25 
26         }
27         return ans;
28     }
29     bool isScramble(string s1, string s2) {
30         S1 = s1, S2 = s2;
31         dp = vector<vector<vector<int> > >
32             (s1.length(), vector<vector<int> >
33                 (s1.length(), vector<int>
34                     (s1.length(), -1)));
35         return DFS(0, 0, s1.length());
36     }
37 };
View Code

 

Partition List

 分存大小最后合并。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *partition(ListNode *head, int x) {
12         ListNode *shead, *bhead, *smaller, *bigger, *p;
13         for(shead = bhead = smaller = bigger = NULL, p = head; p != NULL; p = p->next)
14         {
15             if(p->val < x)
16             {
17                 if(shead == NULL)
18                     shead = p;
19                 if(smaller != NULL)
20                     smaller->next = p;
21                 smaller = p;
22             }
23             else
24             {
25                 if(bhead == NULL)
26                     bhead = p;
27                 if(bigger != NULL)
28                     bigger->next = p;
29                 bigger = p;
30             }
31         }
32         if(smaller != NULL) smaller->next = bhead;
33         if(bigger != NULL) bigger->next = NULL;
34         return shead != NULL ? shead : bhead;
35     }
36 };
View Code

 

Maximal Rectangle

方法一:linecnt[i][j]统计第 i 行到第 j 位置有多少个连续的 '1',接下来枚举列,每一列相当于一次直方图最大矩形统计,计算每个位置向前和向后最远的不少于当前位置值的位置,每次更新结果,总复杂度O(n^2)。

找“最远位置”用迭代指针,理论复杂度略高于O(n)。

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char> > &matrix) {
 4         if(matrix.size() == 0) return 0;
 5         int H = matrix.size(), W = matrix[0].size();
 6         int ans = 0;
 7         vector<int> left(H), right(H);
 8         vector<vector<int> > linecnt(H, vector<int>(W, 0));
 9         for(int i = 0; i < H; i ++)
10         {
11             int last = 0;
12             for(int j = 0; j < W; j ++)
13             {
14                 if(matrix[i][j] == '1') last ++;
15                 else last = 0;
16                 linecnt[i][j] = last;
17             }
18         }
19         for(int k = 0; k < W; k ++)
20         {
21             for(int i = 0; i < H; i ++)
22             {
23                 if(i == 0) left[i] = -1;
24                 else
25                 {
26                     left[i] = i - 1;
27                     while(left[i] > -1 && linecnt[left[i]][k] >= linecnt[i][k])
28                         left[i] = left[left[i]];
29                 }
30             }
31             for(int i = H - 1; i >= 0; i --)
32             {
33                 if(i == H - 1) right[i] = H;
34                 else
35                 {
36                     right[i] = i + 1;
37                     while(right[i] < H && linecnt[right[i]][k] >= linecnt[i][k])
38                         right[i] = right[right[i]];
39                 }
40                 ans = max(ans, (right[i] - left[i] - 1) * linecnt[i][k]);
41             }
42         }
43         return ans;
44     }
45 };
View Code

用单调栈,理论复杂度O(n)。

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char> > &matrix) {
 4         if(matrix.size() == 0) return 0;
 5         vector<vector<int> > linecnt(matrix.size(), vector<int>(matrix[0].size(), 0));
 6         for(int i = 0; i < matrix.size(); i ++)
 7         {
 8             int last = 0;
 9             for(int j = 0; j < matrix[0].size(); j ++)
10             {
11                 if(matrix[i][j] == '1') last ++;
12                 else last = 0;
13                 linecnt[i][j] = last;
14             }
15         }
16         int ans = 0;
17         for(int k = 0; k < matrix[0].size(); k ++)
18         {
19             stack<int> s, site;
20             vector<int>last(matrix.size());
21             for(int i = 0; i < matrix.size(); i ++)
22             {
23                 while(!s.empty() && s.top() >= linecnt[i][k])
24                     s.pop(), site.pop();
25                 if(!s.empty()) last[i] = site.top() + 1;
26                 else last[i] = 0;
27                 s.push(linecnt[i][k]);
28                 site.push(i);
29             }
30             while(!s.empty()) s.pop(), site.pop();
31             for(int i = matrix.size() - 1; i >= 0; i --)
32             {
33                 while(!s.empty() && s.top() >= linecnt[i][k])
34                     s.pop(), site.pop();
35                 if(!s.empty()) ans = max(ans, (site.top() - last[i]) * linecnt[i][k]);
36                 else ans = max(ans, (int)(matrix.size() - last[i]) * linecnt[i][k]);
37                 s.push(linecnt[i][k]);
38                 site.push(i);
39             }
40         }
41         return ans;
42     }
43 };
View Code

方法二:每个 '1' 的点当作一个矩形的底部,left[j]、right[j]、height[j]表示当前行第 j 个位置这个点向左、右、上伸展的最大矩形的边界,作为滚动数组,下一行的数据可以由上一行结果得到,总复杂度O(n^2)。

left[j] = max(这一行最左, left[j](上一行最左)  );

right[j] = min(这一行最右,right[j](上一行最右)  );

height[j] = height[j - 1] + 1;

 1 class Solution {
 2 public:
 3     int maximalRectangle(vector<vector<char> > &matrix) {
 4         if(matrix.size() == 0) return 0;
 5         int H = matrix.size(), W = matrix[0].size();
 6         vector<int> left(W, -1), right(W, W), height(W, 0);
 7         int ans = 0;
 8         for(int i = 0; i < H; i ++)
 9         {
10             int last = -1;
11             for(int j = 0; j < W; j ++)
12             {
13                 if(matrix[i][j] == '1')
14                 {
15                     if(last == -1) last = j;
16                     left[j] = max(left[j], last);
17                     height[j] ++;
18                 }
19                 else
20                 {
21                     last = -1;
22                     left[j] = -1;
23                     height[j] = 0;
24                 }
25             }
26             last = -1;
27             for(int j = W - 1; j >= 0; j --)
28             {
29                 if(matrix[i][j] == '1')
30                 {
31                     if(last == -1) last = j;
32                     right[j] = min(right[j], last);
33                     ans = max(ans, height[j] * (right[j] - left[j] + 1));
34                 }
35                 else
36                 {
37                     last = -1;
38                     right[j] = W;
39                 }
40             }
41         }
42         return ans;
43     }
44 };
View Code

 

Largest Rectangle in Histogram

 参考上一题Maximal Rectangle方法一。

 1 class Solution {
 2 public:
 3     int largestRectangleArea(vector<int> &height) {
 4         if(height.size() == 0) return 0;
 5         vector<int> left(height.size()), right(height.size());
 6         int ans = 0;
 7         for(int i = 0; i < height.size(); i ++)
 8         {
 9             if(i == 0) left[i] = -1;
10             else
11             {
12                 left[i] = i - 1;
13                 while(left[i] > -1 && height[i] <= height[left[i]])
14                     left[i] = left[left[i]];
15             }
16         }
17         for(int i = height.size() - 1; i >= 0; i --)
18         {
19             if(i == height.size() - 1) right[i] = height.size();
20             else
21             {
22                 right[i] = i + 1;
23                 while(right[i] < height.size() && height[i] <= height[right[i]])
24                     right[i] = right[right[i]];
25             }
26             ans = max(ans, (right[i] - left[i] - 1) * height[i]);
27         }
28         return ans;
29     }
30 };
View Code

 

Remove Duplicates from Sorted List II

 加个表头乱搞吧。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *deleteDuplicates(ListNode *head) {
12         if(head == NULL || head->next == NULL) return head;
13         ListNode *newhead = new ListNode(0);
14         newhead->next = head;
15         for(ListNode *pre = newhead, *now = head, *nex = head->next; nex != NULL;)
16         {
17             if(now->val == nex->val)
18             {
19                 while(nex != NULL && now->val == nex->val)
20                 {
21                     free(now);
22                     now = nex;
23                     nex = nex->next;
24                 }
25                 free(now);
26                 pre->next = nex;
27                 if(nex == NULL) break;
28             }
29             else pre = now;
30             now = nex;
31             nex = nex->next;
32         }
33         head = newhead->next;
34         free(newhead);
35         return head;
36     }
37 };
View Code

 

Remove Duplicates from Sorted List

 直接操作。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *deleteDuplicates(ListNode *head) {
12         if(head == NULL || head->next == NULL) return head;
13         for(ListNode *pre = head, *p = head->next; p != NULL;)
14         {
15             while(p != NULL && pre->val == p->val)
16             {
17                 pre->next = p->next;
18                 free(p);
19                 p = pre->next;
20             }
21             if(p == NULL) break;
22             pre = p;
23             p = p->next;
24         }
25         return head;
26     }
27 };
View Code

 

Search in Rotated Sorted Array II

以mid为界,左右两边至少有一边是有序的。由于不可避免地会有O(n)的可能性,所以确定的时候二分,不确定的时候单位缩减边界。

 1 class Solution {
 2 public:
 3     bool search(int A[], int n, int target) {
 4         int left = 0, right = n - 1, mid;
 5         while(left < right)
 6         {
 7             mid = left + right >> 1;
 8             if(target < A[mid] && A[left] < target) right = mid;
 9             else if(target < A[right] && A[mid] < target) left = mid + 1;
10             else
11             {
12                 if(A[left] == target || A[right] == target) return true;
13                 else if(A[left] < target) left ++;
14                 else if(target < A[right]) right --;
15                 else return false;
16             }
17         }
18         return A[left] == target ? true : false;
19     }
20 };
View Code

 

Remove Duplicates from Sorted Array II

 记下放了几个,多了不放。

 1 class Solution {
 2 public:
 3     int removeDuplicates(int A[], int n) {
 4         int i, j, cnt;
 5         for(i = j = cnt = 0; i < n; i ++)
 6         {
 7             if(j != 0 && A[j - 1] == A[i]) cnt ++;
 8             else cnt = 0;
 9             if(cnt < 2) A[j ++] = A[i];
10         }
11         return j;
12     }
13 };
View Code

 

Word Search

基础DFS。

 1 class Solution {
 2 public:
 3     int dx[4] = {1, -1, 0, 0};
 4     int dy[4] = {0, 0, 1, -1};
 5     bool DFS(int x, int y, vector<vector<char> > &board, string word, int ith)
 6     {
 7         if(board[x][y] != word[ith]) return false;
 8         if(ith == word.length() - 1) return true;
 9         board[x][y] = '.';
10         for(int i = 0; i < 4; i ++)
11         {
12             int nx = x + dx[i];
13             int ny = y + dy[i];
14             if(nx >= 0 && ny >= 0 && nx < board.size() && ny < board[0].size())
15             {
16                 if(DFS(nx, ny, board, word, ith + 1))
17                 {
18                     board[x][y] = word[ith];
19                     return true;
20                 }
21             }
22         }
23         board[x][y] = word[ith];
24         return false;
25     }
26     bool exist(vector<vector<char> > &board, string word) {
27         for(int i = 0; i < board.size(); i ++)
28         {
29             for(int j = 0; j < board[0].size(); j ++)
30             {
31                 if(DFS(i, j, board, word, 0)) return true;
32             }
33         }
34         return false;
35     }
36 };
View Code

 

Subsets

基础DFS。

 1 class Solution {
 2 public:
 3     vector<int> now;
 4     vector<vector<int> > res;
 5     void DFS(vector<int> &S, int ith)
 6     {
 7         if(ith == S.size())
 8         {
 9             res.push_back(now);
10             return;
11         }
12         DFS(S, ith + 1);
13         now.push_back(S[ith]);
14         DFS(S, ith + 1);
15         now.pop_back();
16     }
17     vector<vector<int> > subsets(vector<int> &S) {
18         sort(S.begin(), S.end());
19         DFS(S, 0);
20         return res;
21     }
22 };
View Code

 

Combinations

基础DFS。

 1 class Solution {
 2 public:
 3     vector<int> now;
 4     vector<vector<int> > res;
 5     void DFS(int n, int ith, int sum, int k)
 6     {
 7         if(sum == k)
 8         {
 9             res.push_back(now);
10             return;
11         }
12         if(sum + n - ith + 1 > k)
13         {
14             DFS(n, ith + 1, sum, k);
15         }
16         now.push_back(ith);
17         DFS(n, ith + 1, sum + 1, k);
18         now.pop_back();
19     }
20     vector<vector<int> > combine(int n, int k) {
21         DFS(n, 1, 0, k);
22         return res;
23     }
24 };
View Code

 

Minimum Window Substring

先统计 T 中各字符都有多少个,然后两个下标一前(i)一后(j)在 S 上跑, 当 i 跑到把 T 中字符都包含的位置时候,让 j 追到第一个包含 T 的字符的地方,更新结果,去掉 j 这个位置字符的统计,让 i 继续跑,如此反复。

i 和 j 都只遍历一遍 S,复杂度 O(n)。

 1 class Solution {
 2 public:
 3     string minWindow(string S, string T) {
 4         vector<int> cnt(256, 0), need(256, 0);
 5         int sum = 0, len = 0x3f3f3f3f;
 6         string ans;
 7         for(int i = 0; i < T.size(); i ++)
 8             need[T[i]] ++;
 9         for(int i = 0, j = 0; i < S.length(); j ++)
10         {
11             while(i < S.length() && sum < T.length())
12             {
13                 if(cnt[S[i]] < need[S[i]])
14                     sum ++;
15                 cnt[S[i]] ++;
16                 i ++;
17             }
18             while(sum == T.length() && j < S.length())
19             {
20                 cnt[S[j]] --;
21                 if(cnt[S[j]] < need[S[j]])
22                     break;
23                 j ++;
24             }
25             if(sum < T.length()) break;
26             if(i - j < len)
27                 ans = S.substr(j, i - j), len = i - j;
28             sum --;
29         }
30         return ans;
31     }
32 };
View Code

 

Sort Colors

轮流找:

 1 class Solution {
 2 public:
 3     void sortColors(int A[], int n) {
 4         int find = 0;
 5         for(int i = 0, j = n - 1; i < n; i ++)
 6         {
 7             if(A[i] == find) continue;
 8             while(j > i && A[j] != find) j --;
 9             if(j > i) swap(A[i], A[j]);
10             else i --, j = n - 1, find ++;
11         }
12     }
13 };
View Code

找到哪个放哪个:

 1 class Solution {
 2 public:
 3     void sortColors(int A[], int n) {
 4         int p0, p1, p2;
 5         for(p0 = 0, p1 = p2 = n - 1; p0 < p1; )
 6         {
 7             if(A[p0] == 0) p0 ++;
 8             if(A[p0] == 1) swap(A[p0], A[p1 --]);
 9             if(A[p0] == 2)
10             {
11                 swap(A[p0], A[p2 --]);
12                 p1 = p2;
13             }
14         }
15     }
16 };
View Code

 

Search a 2D Matrix

写两个二分查找。或者把整个矩阵看作一维,直接二分,换算坐标。

 1 class Solution {
 2 public:
 3     bool searchMatrix(vector<vector<int> > &matrix, int target) {
 4         int left, right, mid;
 5         for(left = 0, right = matrix.size(); left < right - 1; )
 6         {
 7             mid = left + right >> 1;
 8             if(matrix[mid][0] > target) right = mid;
 9             else left = mid;
10         }
11         if(left == matrix.size() || right == 0) return false;
12         vector<int> &a = matrix[left];
13         for(left = 0, right = a.size(); left < right - 1;)
14         {
15             mid = left + right >> 1;
16             if(a[mid] > target) right = mid;
17             else left = mid;
18         }
19         if(left == a.size() || right == 0) return false;
20         return a[left] == target;
21     }
22 };
View Code

 

Set Matrix Zeroes

O(m+n)的方法是容易想到的,而空间复杂度O(1),只要利用原矩阵的一行和一列来使用O(m+n)的方法就行了。

 1 class Solution {
 2 public:
 3     void setZeroes(vector<vector<int> > &matrix) {
 4         if(matrix.size() == 0) return;
 5         int x = -1, y = -1;
 6         for(int i = 0; i < matrix.size(); i ++)
 7         {
 8             for(int j = 0; j < matrix[0].size(); j ++)
 9             {
10                 if(matrix[i][j] == 0)
11                 {
12                     if(x == -1)
13                     {
14                         x = i, y = j;
15                     }
16                     else
17                     {
18                         matrix[x][j] = 0;
19                         matrix[i][y] = 0;
20                     }
21                 }
22             }
23         }
24         if(x == -1) return;
25         for(int i = 0; i < matrix.size(); i ++)
26             for(int j = 0; j < matrix[0].size(); j ++)
27                 if((matrix[x][j] == 0 || matrix[i][y] == 0) && (i != x && j != y)) matrix[i][j] = 0;
28         for(int i = 0; i < matrix.size(); i ++) matrix[i][y] = 0;
29         for(int j = 0; j < matrix[0].size(); j ++) matrix[x][j] = 0;
30     }
31 };
View Code

 

Edit Distance

 动态规划,先初始化 dp[i][0] 和 dp[0][i],即每个字符串对应空串的编辑距离为串长度,之后对每个位置取子问题加上当前位置 改、删、增得解的最小值。

 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         vector<vector<int> > dp(word1.length() + 1, vector<int>(word2.length() + 1, 0));
 5         for(int i = 0; i < word1.length(); i ++) dp[i + 1][0] = i + 1;
 6         for(int i = 0; i < word2.length(); i ++) dp[0][i + 1] = i + 1;
 7         for(int i = 0; i < word1.length(); i ++)
 8             for(int j = 0; j < word2.length(); j ++)
 9             {
10                 if(word1[i] != word2[j])
11                     dp[i + 1][j + 1] = min(dp[i][j] + 1, min(dp[i][j + 1] + 1, dp[i + 1][j] + 1));
12                 else
13                     dp[i + 1][j + 1] = min(dp[i][j], min(dp[i][j + 1] + 1, dp[i + 1][j] + 1));
14             }
15         return dp[word1.length()][word2.length()];
16     }
17 };
View Code

 

Simplify Path

 好烦人的题,没什么好说的。

 1 class Solution {
 2 public:
 3     string simplifyPath(string path) {
 4         stack<string> s;
 5         string str;
 6         for(int i = 0; i < path.length(); i ++)
 7         {
 8             if(path[i] == '/')
 9             {
10                 if(str == "..")
11                 {
12                     if(!s.empty()) 
13                         s.pop();
14                 }
15                 else if(str != "." && str != "")
16                     s.push(str);
17                 str.clear();
18             }
19             else
20                 str += path[i];
21         }
22         if(str == "..")
23         {
24             if(!s.empty())
25                 s.pop();
26         }
27         else if(str != "." && str != "")
28             s.push(str);
29         if(s.empty()) return "/";
30         for(str.clear(); !s.empty(); s.pop())
31             str = "/" + s.top() + str;
32         return str;
33     }
34 };
View Code

 

Climbing Stairs

 递推,就是斐波那契数列。

1 class Solution {
2 public:
3     int climbStairs(int n) {
4         return (int)
5             (pow((1+sqrt(5))/2, n + 1) / sqrt(5) - 
6             pow((1-sqrt(5))/2, n + 1) / sqrt(5) + 0.1);
7     }
8 };
View Code

 

Sqrt(x)

 牛顿迭代。

设输入为n,f(x)=x^2-n,解就是f(x)=0时的x。

设猜了一数x[0],那么在f(x)在x[0]处的切线与x轴的交点x[1]更接近目标解(可画图看看)。

那么递推下去,x[i]=(x[i-1]+n/x[i-1])/2,用double,越推越精确,直到自己想要的精度。

 1 class Solution {
 2 public:
 3     int sqrt(int x) {
 4         double now, last;
 5         if(x == 0) return 0;
 6         for(now = last = (double)x; ; last = now)
 7         {
 8             now = (last + (x / last)) * 0.5;
 9             if(fabs(last - now) < 1e-5) break;
10         }
11         return (int)(now + 1e-6);
12     }
13 };
View Code

 

Text Justification

每行限制长度,空格均匀插入,不能完全平均的情况下优先靠前的单词间隔。

最后一行特别处理,单词间只有一个空格,剩下的放在末尾。

 1 class Solution {
 2 public:
 3     vector<string> fullJustify(vector<string> &words, int L) {
 4         vector<string> ans;
 5         int cnt = 0, i, j, k, l;
 6         for(i = 0, j = 0; j < words.size(); i ++)
 7         {
 8             if(i < words.size())
 9             {
10                 cnt += words[i].length();
11                 if(i == j) continue;
12             }
13             if(i == words.size() || (L - cnt) / (i - j) < 1)
14             {
15                 int blank = 0;
16                 if(i < words.size()) blank = (i - j - 1) ? (L - cnt + words[i].length()) / (i - j - 1) : 0;
17                 string tmp = "";
18                 l = i < words.size() ? (L - cnt + words[i].length() - blank * (i - j - 1)) : 0;
19                 for(k = j; k < i; k ++, l --)
20                 {
21                     tmp += words[k];
22                     if(k != i - 1)
23                     {
24                         if(i != words.size())
25                         {
26                             for(int bl = 0; bl < blank; bl ++) tmp += " ";
27                             if(l > 0) tmp += " ";
28                         }
29                         else
30                             tmp += " ";
31                     }
32                 }
33                 while(tmp.length() < L) tmp += " ";
34                 ans.push_back(tmp);
35                 cnt = 0;
36                 j = i;
37                 i --;
38             }
39         }
40         return ans;
41     }
42 };
View Code

 

Plus One

大整数加法。

 1 class Solution {
 2 public:
 3     vector<int> plusOne(vector<int> &digits) {
 4         int cur, i;
 5         if(digits.size() == 0) return digits;
 6         for(i = digits.size() - 1, cur = 1; i >= 0; i --)
 7         {
 8             int tmp = digits[i] + cur;
 9             cur = tmp / 10;
10             digits[i] = tmp % 10;
11         }
12         if(cur) digits.insert(digits.begin(), cur);
13         return digits;
14     }
15 };
View Code

 

Valid Number

用DFA也不麻烦,题目定义太模糊,为了理解规则错很多次也没办法。

 1 class Solution {
 2 public:
 3 
 4     int f[11][129];
 5     const int fail = -1;    //非法
 6     const int st = 0;       //起始
 7     const int pn = 1;       //正负号
 8     const int di = 2;       //整数部分
 9     const int del = 3;      //前面无数字小数点
10     const int ddi = 4;      //小数部分
11     const int ndel = 5;     //前面有数字小数点
12     const int dibl = 6;     //数后空格
13     const int ex = 7;       //进入指数
14     const int epn = 8;      //指数符号
15     const int edi = 9;      //指数数字
16     const int end = 10;     //正确结束
17     void buildDFA()
18     {
19         memset(f, -1, sizeof(f));
20         f[st][' '] = st;
21         f[st]['+'] = f[st]['-'] = pn;
22         for(int i = '0'; i <= '9'; i ++)
23         {
24             f[st][i] = f[pn][i] = f[di][i] = di;
25             f[del][i] = f[ndel][i] = f[ddi][i] = ddi;
26             f[ex][i] = f[epn][i] = f[edi][i] = edi;
27         }
28         f[di]['.'] = ndel;
29         f[st]['.'] = f[pn]['.'] = del;
30         f[di][' '] = f[ndel][' '] = f[ddi][' '] = f[dibl][' '] = f[edi][' '] = dibl;
31         f[di][0] = f[ndel][0] = f[dibl][0] = f[ddi][0] = f[edi][0] = end;
32         f[di]['e'] = f[ndel]['e'] = f[ddi]['e'] = ex;
33         f[ex][' '] = ex;
34         f[ex]['+'] = f[ex]['-'] = epn;
35     }
36     bool DFA(const char *s)
37     {
38         int situ = st;
39         for(int i = 0;; i ++)
40         {
41             situ = f[situ][s[i]];
42             if(situ == end) return true;
43             if(situ == fail) return false;
44         }
45         return true;
46     }
47     bool isNumber(const char *s) {
48         buildDFA();
49         return DFA(s);
50     }
51 };
View Code

 

Add Binary

翻转,大整数加法,再翻转。无心情优化。

 1 class Solution {
 2 public:
 3     string addBinary(string a, string b) {
 4         reverse(a.begin(), a.end());
 5         reverse(b.begin(), b.end());
 6         string c;
 7         int cur = 0, i;
 8         for(i = 0; i < min(a.length(), b.length()); i ++)
 9         {
10             int tmp = a[i] - '0' + b[i] - '0' + cur;
11             cur = tmp >> 1;
12             c += (tmp & 1) + '0';
13         }
14         string &t = a.length() > b.length() ? a : b;
15         for(; i < t.length(); i ++)
16         {
17             int tmp = t[i] - '0' + cur;
18             cur = tmp >> 1;
19             c += (tmp & 1) + '0';
20         }
21         if(cur) c += '1';
22         reverse(c.begin(), c.end());
23         return c;
24     }
25 };
View Code

 

Merge Two Sorted Lists

归并排序的一次操作,设个哨兵头结点,结束后free。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *mergeTwoLists(ListNode *l1, ListNode *l2) {
12         ListNode *thead = new ListNode(0), *p = thead;
13         while(l1 != NULL && l2 != NULL)
14         {
15             if(l1->val < l2->val) p->next = l1, p = l1, l1 = l1->next;
16             else p->next = l2, p = l2, l2 = l2->next;
17         }
18         while(l1 != NULL) p->next = l1, p = l1, l1 = l1->next;
19         while(l2 != NULL) p->next = l2, p = l2, l2 = l2->next;
20         p = thead->next;
21         free(thead);
22         return p;
23     }
24 };
View Code

 

Minimum Path Sum

递推

 1 class Solution {
 2 public:
 3     int minPathSum(vector<vector<int> > &grid) {
 4         if(grid.size() == 0) return 0;
 5         for(int i = 0; i < grid.size(); i ++)
 6         {
 7             for(int j = 0; j < grid[0].size(); j ++)
 8             {
 9                 int tmp = 0x3f3f3f3f;
10                 if(i > 0) tmp = min(tmp, grid[i][j] + grid[i - 1][j]);
11                 if(j > 0) tmp = min(tmp, grid[i][j] + grid[i][j - 1]);
12                 grid[i][j] = tmp == 0x3f3f3f3f ? grid[i][j] : tmp;
13             }
14         }
15         return grid[grid.size() - 1][grid[0].size() - 1];
16     }
17 };
View Code

 

Unique Paths II

 递推

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
 4         if(obstacleGrid.size() == 0) return 0;
 5         obstacleGrid[0][0] = obstacleGrid[0][0] != 1;
 6         for(int i = 0; i < obstacleGrid.size(); i ++)
 7             for(int j = 0; j < obstacleGrid[0].size(); j ++)
 8             {
 9                 if(i == 0 && j == 0) continue;
10                 if(obstacleGrid[i][j] == 1) 
11                 {
12                     obstacleGrid[i][j] = 0;
13                     continue;
14                 }
15                 if(i > 0) obstacleGrid[i][j] += obstacleGrid[i - 1][j];
16                 if(j > 0) obstacleGrid[i][j] += obstacleGrid[i][j - 1];
17             }
18         return obstacleGrid[obstacleGrid.size() - 1][obstacleGrid[0].size() - 1];
19     }
20 };
View Code

 

Unique Paths

这是当年学组合数时候的经典题型吧。

 1 class Solution {
 2 public:
 3     int COM(int a, int b)
 4     {
 5         b = min(b, a - b);
 6         int ret = 1, i, j;
 7         for(i = a, j = 1; i > a - b; i --)
 8         {
 9             ret *= i;
10             for(; j <= b && ret % j == 0; j ++)
11                 ret /= j;
12         }
13         return ret;
14     }
15     int uniquePaths(int m, int n) {
16         return COM(m + n - 2, m - 1);
17     }
18 };
View Code

 

Rotate List

因为k可能比长度大,需要求长度然后k对长度取模。那么就不要矫情地追求双指针一遍扫描了。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *rotateRight(ListNode *head, int k) {
12         if(head == NULL) return NULL;
13         int cnt;
14         ListNode *en, *p;
15         for(cnt = 1, en = head; en->next != NULL; cnt ++, en = en->next);
16         k %= cnt;
17         for(p = head, cnt --; cnt != k; cnt --, p = p->next);
18         en->next = head;
19         en = p->next;
20         p->next = NULL;
21         return en;
22     }
23 };
View Code

 

Permutation Sequence

 一位一位算,每一位优先没使用过的较小的数字,而其后剩下的m个位置有 m! 种排列方法,用 k 减去,直到k不大于这个方法数,则这一位就是枚举到的这个数。

 1 class Solution {
 2 public:
 3     int permu[10];
 4     bool vis[10];
 5     string getPermutation(int n, int k) {
 6         permu[0] = 1;
 7         for(int i = 1; i < 10; i ++) permu[i] = permu[i - 1] * i;
 8         memset(vis, 0, sizeof(vis));
 9         string ans;
10         for(int i = 1; i <= n; i ++)
11         {
12             for(int j = 1; j <= n; j ++)
13             {
14                 if(!vis[j])
15                 {
16                     if(k > permu[n - i]) k -= permu[n - i];
17                     else {ans += '0' + j; vis[j] = true; break;}
18                 }
19             }
20         }
21         return ans;
22     }
23 };
View Code

 

Spiral Matrix II

直接算每个位置的数是多少有木有很霸气

先看当前位置之外有几个嵌套的正方形,再看当前位置在当前正方形四条边的第几条,求出坐标(x,y)位置的数。

 1 class Solution {
 2 public:
 3     vector<vector<int> > res;
 4     vector<int> nsq;
 5     int calnum(int i, int j, int n)
 6     {
 7         int num, tmp;
 8         tmp = min(min(i, j), min(n - 1 - i, n - 1 - j));
 9         num = nsq[tmp];
10         if(i == tmp) return num + j - tmp + 1;
11         if(n - j - 1 == tmp) return num + n - 2 * tmp + i - tmp;
12         if(n - i - 1 == tmp) return num + 2 * (n - 2 * tmp) - 2 + n - j - tmp;
13         return num + 3 * (n - 2 * tmp) - 3 + n - i - tmp;
14     }
15     vector<vector<int> > generateMatrix(int n) {
16         nsq.push_back(0);
17         for(int i = n; i > 0; i -= 2) nsq.push_back(4 * i - 4);
18         for(int i = 1; i < nsq.size(); i ++) nsq[i] += nsq[i - 1];
19         for(int i = 0; i < n; i ++)
20         {
21             vector<int> tmp;
22             for(int j = 0; j < n; j ++)
23             {
24                 tmp.push_back(calnum(i, j, n));
25             }
26             res.push_back(tmp);
27         }
28         return res;
29     }
30 };
View Code

 

Length of Last Word 

 从后往前找。

1 class Solution {
2 public:
3     int lengthOfLastWord(const char *s) {
4         int i, j;
5         for(i = strlen(s) - 1; i >= 0 && s[i] == ' '; i --);
6         for(j = i - 1; j >= 0 && s[j] != ' '; j --);
7         return i < 0 ? 0 : i - j;
8     }
9 };
View Code

 

Insert Interval

end 比 newInterval 的 start 小的 intervals 直接插入,从 end 比 newInterval 的 start 大的 intervals 开始,到 start 比 newInterval 的 end 大的 intervals 结束,对这部分区间合并,再把之后的 intervals直接插入,特判 newInterval 最小和最大两种极端情况。

 1 /**
 2  * Definition for an interval.
 3  * struct Interval {
 4  *     int start;
 5  *     int end;
 6  *     Interval() : start(0), end(0) {}
 7  *     Interval(int s, int e) : start(s), end(e) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<Interval> res;
13     vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) {
14         if(intervals.size() == 0) {res.push_back(newInterval); return res;}
15         int i, j;
16         for(i = 0; i < intervals.size() && newInterval.start > intervals[i].end; i ++)
17             res.push_back(intervals[i]);
18         for(j = i; j < intervals.size() && newInterval.end >= intervals[j].start; j ++);
19         if(j != 0 && i != intervals.size()) 
20             res.push_back(Interval(min(intervals[i].start, newInterval.start),
21                                 max(intervals[j - 1].end, newInterval.end)));
22         else
23             res.push_back(newInterval);
24         for(; j < intervals.size(); j ++) res.push_back(intervals[j]);
25         return res;
26     }
27 };
View Code

 

Merge Intervals

先按start排个序,然后慢慢合并。。。

 1 /**
 2  * Definition for an interval.
 3  * struct Interval {
 4  *     int start;
 5  *     int end;
 6  *     Interval() : start(0), end(0) {}
 7  *     Interval(int s, int e) : start(s), end(e) {}
 8  * };
 9  */
10 class Solution {
11 public:
12     vector<Interval> res;
13     static bool cxompp(const Interval &a, const Interval &b)
14     {return a.start < b.start;}
15     vector<Interval> merge(vector<Interval> &intervals) {
16         if(intervals.size() == 0) return res;
17         sort(intervals.begin(), intervals.end(), cxompp);
18         Interval last = intervals[0];
19         for(int i = 1; i < intervals.size(); i ++)
20         {
21             if(last.end >= intervals[i].start)
22                 last.end = max(last.end, intervals[i].end);
23             else
24                 res.push_back(last), last = intervals[i];
25         }
26         res.push_back(last);
27         return res;
28     }
29 };
View Code

 

Jump Game

 维护最大可跳距离,每个位置都枚举一次。

 1 class Solution {
 2 public:
 3     bool canJump(int A[], int n) {
 4         if(n == 0) return false;
 5         int i, jumpdis;
 6         for(i = jumpdis = 0; i < n && jumpdis >= 0; i ++, jumpdis --)
 7             jumpdis = max(A[i], jumpdis);
 8         return i == n;
 9     }
10 };
View Code

 

Spiral Matrix

 模拟转一遍吧。写了俩代码,差不多,处理拐弯的方式略有不同。

代码一:

 1 class Solution {
 2 public:
 3     int dx[4] = {0, 1, 0, -1};
 4     int dy[4] = {1, 0, -1, 0};
 5     vector<int> res;
 6     bool JudgeValid(int x, int y, 
 7         vector<vector<bool> > &vis, vector<vector<int> > &matrix)
 8     {
 9         return x >= 0 && x < matrix.size() && 
10             y >= 0 && y < matrix[0].size() && vis[x][y] == false;
11     }
12     vector<int> spiralOrder(vector<vector<int> > &matrix) {
13         int dir, x, y, nx, ny;
14         if(matrix.size() == 0) return res; 
15         vector<vector<bool> > vis(matrix.size(), vector<bool>(matrix[0].size(), false));
16         for(dir = x = y = 0; JudgeValid(x, y, vis, matrix); x = nx, y = ny)
17         {
18             res.push_back(matrix[x][y]);
19             vis[x][y] = true;
20             nx = x + dx[dir];
21             ny = y + dy[dir];
22             if(!JudgeValid(nx, ny, vis, matrix))
23             {
24                 dir = (dir + 1) % 4;
25                 nx = x + dx[dir];
26                 ny = y + dy[dir];
27             }
28         }
29         return res;
30     }
31 };            
View Code

代码二:

 1 class Solution {
 2 public:
 3     int dx[4] = {0, 1, 0, -1};
 4     int dy[4] = {1, 0, -1, 0};
 5     vector<int> res;
 6     vector<int> spiralOrder(vector<vector<int> > &matrix) {
 7         int dir, x, y, nx, ny;
 8         int l, r, u, d;
 9         if(matrix.size() == 0) return res; 
10         l = u = -1;
11         r = matrix[0].size();
12         d = matrix.size();
13         for(dir = x = y = 0; res.size() < matrix.size() * matrix[0].size(); 
14             x = nx, y = ny)
15         {
16             res.push_back(matrix[x][y]);
17             nx = x + dx[dir];
18             ny = y + dy[dir];
19             if(nx == d || nx == u || ny == r || ny == l)
20             {
21                 dir = (dir + 1) % 4;
22                 if(dir == 0) l ++, r --, d --;
23                 else if(dir == 3) u ++;
24                 nx = x + dx[dir];
25                 ny = y + dy[dir];
26             }
27         }
28         return res;
29     }
30 };
View Code

 

Maximum Subarray

 最大子串和,子串要求至少包含一个数字。

一个变量 sum 表示当前求得的子串和,当 sum 小于0时,对后面的子串没有贡献,则把 sum 置零,中间处理一下要求至少包含一个数字的要求即可。

 1 class Solution {
 2 public:
 3     int maxSubArray(int A[], int n) {
 4         int ans = A[0], sum = 0;
 5         for(int i = 0; i < n; i ++)
 6         {
 7             sum += A[i];
 8             if(sum < 0) sum = 0, ans = max(ans, A[i]);
 9             else ans = max(ans, sum);
10         }
11         return ans;
12     }
13 };
View Code

 

N-Queens II

 题目没说 n 的取值范围,就不用 位运算 做标记了。

老老实实开三个 bool 数组,一个标记纵列,另外两个标记两个斜列,一行一行DFS。

 1 class Solution {
 2 public:
 3     vector<bool> col, lc, rc;
 4     int ans;
 5     void DFS(int cur, int n)
 6     {
 7         if(cur == n)
 8         {
 9             ans ++;
10             return;
11         }
12         for(int i = 0; i < n; i ++)
13         {
14             if(!col[i] && !lc[n - cur - 1 + i] && !rc[cur + i])
15             {
16                 col[i] = lc[n - cur - 1 + i] = rc[cur + i] = true;
17                 DFS(cur + 1, n);
18                 col[i] = lc[n - cur - 1 + i] = rc[cur + i] = false;
19             }
20         }
21     }
22     int totalNQueens(int n) {
23         ans = 0;
24         col.resize(n, 0);
25         lc.resize(n << 1, 0);
26         rc.resize(n << 1, 0);
27         DFS(0, n);
28         return ans;
29     }
30 };
View Code

 

N-Queens

同上

 1 class Solution {
 2 public:
 3     vector<string> tmp;
 4     vector<vector<string> > res;
 5     vector<bool> col, lc, rc;
 6     void DFS(int cur, int n)
 7     {
 8         if(cur == n)
 9         {
10             res.push_back(tmp);
11             return;
12         }
13         string now(n, '.');
14         for(int i = 0; i < n; i ++)
15         {
16             if(!col[i] && !lc[n - cur - 1 + i] && !rc[cur + i])
17             {
18                 col[i] = lc[n - cur - 1 + i] = rc[cur + i] = true;
19                 now[i] = 'Q';
20                 tmp.push_back(now);
21                 DFS(cur + 1, n);
22                 tmp.pop_back();
23                 now[i] = '.';
24                 col[i] = lc[n - cur - 1 + i] = rc[cur + i] = false;
25             }
26         }
27     }
28     vector<vector<string> > solveNQueens(int n) {
29         col.resize(n, 0);
30         lc.resize(n << 1, 0);
31         rc.resize(n << 1, 0);
32         DFS(0, n);
33         return res;
34     }
35 };
View Code

 

Pow(x, n)

 很多人用特判错过了 n = -2147483648 这么优美的 trick,而不特判的话,似乎只能 long long 了。

经典的快速幂,用二进制理解也好,用折半理解也好,网上很多资料。

 1 class Solution {
 2 public:
 3     double pow(double x, int n) {
 4         double res = 1;
 5         long long nn = n;
 6         if(nn < 0) x = 1 / x, nn = -nn;
 7         while(nn)
 8         {
 9             if(nn & 1) res *= x;
10             x *= x;
11             nn >>= 1;
12         }
13         return res;
14     }
15 };
View Code

 

Anagrams

这概念以前没听过诶。。题也没看到样例,不知道以后会不会更新,网上查了才明白啥意思。

调换单词字母顺序能一致的单词集合全放进答案。比如有tea, eat, aet,就都要放进答案,有cat, atc,就都要放进答案,而如果孤零零有个dog,没其他可和他一组的,那么就不放进答案。

手写hash能更快些,但是题目没给数据范围,给hash数组定多大都没合理性,干脆用unordered_map好了。

 1 class Solution {
 2 public:
 3     vector<string> res;
 4     vector<string> anagrams(vector<string> &strs) {
 5         unordered_map<string, int> mp;
 6         for(int i = 0; i < strs.size(); i ++)
 7         {
 8             string tmp = strs[i];
 9             sort(tmp.begin(), tmp.end());
10             if(!mp.count(tmp)) mp[tmp] = 0;
11             else mp[tmp] ++;
12         }
13         for(int i = 0; i < strs.size(); i ++)
14         {
15             string tmp = strs[i];
16             sort(tmp.begin(), tmp.end());
17             if(mp.count(tmp) && mp[tmp] > 0) res.push_back(strs[i]);
18         }
19         return res;
20     }
21 };
View Code

 

Rotate Image

四个一组,就地旋转。

 1 class Solution {
 2 public:
 3     void rotate(vector<vector<int> > &matrix) {
 4         if(matrix.size() == 0) return;
 5         int len = matrix.size();
 6         int lenlimi = len + 1 >> 1;
 7         for(int i = 0; i < lenlimi; i ++)
 8             for(int j = 0; j < (len & 1 ? lenlimi - 1 : lenlimi); j ++)
 9             {
10                 int tmp = matrix[i][j];
11                 matrix[i][j] = matrix[len - j - 1][i];
12                 matrix[len - j - 1][i] = matrix[len - i - 1][len - j - 1];
13                 matrix[len - i - 1][len - j - 1] = matrix[j][len - i - 1];
14                 matrix[j][len - i - 1] = tmp;
15             }
16     }
17 };
View Code

 

Permutations II

 有重复数字,把数字统计起来好了。因为题目没说数字大小,所以统计用了unordered_map。

也可以把数组排序,DFS时跳过重复的数字。

 1 class Solution {
 2 public:
 3     unordered_map<int, int> mp;
 4     vector<int> tmp;
 5     vector<vector<int> > res;
 6     int numsize;
 7     void DFS(int cnt)
 8     {
 9         if(cnt == numsize)
10         {
11             res.push_back(tmp);
12         }
13         for(unordered_map<int, int>::iterator it = mp.begin(); it != mp.end(); it ++)
14         {
15             if(it->second != 0)
16             {
17                 tmp.push_back(it->first);
18                 it->second --;
19                 DFS(cnt + 1);
20                 tmp.pop_back();
21                 it->second ++;
22             }
23         }
24     }
25     vector<vector<int> > permute(vector<int> &num) {
26         numsize = num.size();
27         for(int i = 0; i < num.size(); i ++)
28         {
29             if(!mp.count(num[i])) mp[num[i]] = 1;
30             else mp[num[i]] ++;
31         }
32         DFS(0);
33         return res;
34     }
35 };
View Code

 

Permutations

虽然题目没说有没有重复数字。。既然 Permutations II 说有了,那就当这个没有吧。

传统DFS。

 1 class Solution {
 2 public:
 3     vector<vector<int> > res;
 4     void DFS(int cur, vector<int> &num)
 5     {
 6         if(cur == num.size())
 7         {
 8             res.push_back(num);
 9             return;
10         }
11         for(int i = cur; i < num.size(); i ++)
12         {
13             swap(num[cur], num[i]);
14             DFS(cur + 1, num);
15             swap(num[cur], num[i]);
16         }
17     }
18     vector<vector<int> > permute(vector<int> &num) {
19         DFS(0, num);
20         return res;
21     }
22 };
View Code

 

Jump Game II

维护一步最远到达的位置,到达这个位置之前的位置需要的步数都是一样的,到达这个位置的时候,下一步的最远位置已经更新完毕。

 1 class Solution {
 2 public:
 3     int jump(int A[], int n) {
 4         int nex = 0, pace = 0, far = 0;
 5         for(int i = 0; i <= nex && i < n - 1; i ++)
 6         {
 7             far = max(far, A[i] + i);
 8             if(i == nex)
 9             {
10                 pace ++;
11                 nex = far;
12             }
13         }
14         return pace;
15     }
16 };
View Code

 

Wildcard Matching

同步扫描两个字符串,每当 p 遇到 '*' ,记录s和p的当前扫描位置,当 s 与 p 不匹配时,跑扫描指针回到 '*' 后一个字符, s 扫描指针回到上次遇到 '*' 之后与 p 开始匹配位置的下一个位置。

 1 class Solution {
 2 public:
 3     bool isMatch(const char *s, const char *p) {
 4         int last_star = -1, last_s = -1, i, j;
 5         for(i = j = 0; s[i]; )
 6         {
 7             if(s[i] == p[j] || p[j] == '?') i ++, j ++;
 8             else if(p[j] == '*') last_star = ++ j, last_s = i;
 9             else if(last_star != -1) i = ++ last_s, j = last_star;
10             else return false;
11         }
12         while(p[j] == '*') j ++;
13         return !s[i] && !p[j];
14     }
15 };
View Code

 

Multiply Strings

 翻转num1和num2,大整数乘法,把结果再翻转。注意 int 和 char 的转换。

 1 class Solution {
 2 public:
 3     string multiply(string num1, string num2) {
 4         string ans(num1.length() + num2.length() + 1, 0);
 5         reverse(num1.begin(), num1.end());
 6         reverse(num2.begin(), num2.end());
 7         int cur = 0, i, j, k;
 8         for(i = 0; i < num1.length(); i ++)
 9         {
10             for(j = 0; j < num2.length(); j ++)
11             {
12                 ans[i + j] += cur + (num1[i] - '0') * (num2[j] - '0');
13                 cur = ans[i + j] / 10;
14                 ans[i + j] %= 10;
15             }
16             for(k = i + j; cur; k ++)
17             {
18                 ans[k] += cur;
19                 cur = ans[k] / 10;
20                 ans[k] %= 10;
21             }
22         }
23         for(k = ans.length() - 1; k > 0 && ans[k] == 0; k --);
24         ans.resize(k + 1);
25         for(int i = 0; i < ans.length(); i ++) ans[i] += '0';
26         reverse(ans.begin(), ans.end());
27         return ans;
28     }
29 };
View Code

 

Trapping Rain Water

 对于每个位置,取这个位置“左边最高的”和“右边最高的”的”较低者“,如果“较低者”比这个位置高,则这个位置存水高度为“较低者”减该位置高度。

 1 class Solution {
 2 public:
 3     int trap(int A[], int n) {
 4         vector<int> pre;
 5         int i, maxheight, ans;
 6         for(i = maxheight = 0; i < n; i ++)
 7         {
 8             maxheight = max(A[i], maxheight);
 9             pre.push_back(maxheight);
10         }
11         for(maxheight = ans = 0, i = n - 1; i > 0; i --)
12         {
13             maxheight = max(A[i], maxheight);
14             ans += max(0, min(pre[i] - A[i], maxheight - A[i]));
15         }
16         return ans;
17     }
18 };
View Code

 

First Missing Positive

题目要求时间O(n),空间O(1),经分析,不得不破坏原数组 A。

方法一:

剔除非整数,把原数组 A 当作存在标记,存在的数 x 则 A[x-1]取负数。

 1 class Solution {
 2 public:
 3     int firstMissingPositive(int A[], int n) {
 4         int i, j;
 5         for(i = j = 0; i < n; i ++)
 6             if(A[i] > 0) A[j ++] = A[i];
 7         for(i = 0; i < j; i ++)
 8             if(abs(A[i]) <= j) A[abs(A[i]) - 1] = -abs(A[abs(A[i]) - 1]);
 9         for(i = 0; i < j; i ++)
10             if(A[i] > 0) return i + 1;
11         return j + 1;
12     }
13 };
View Code

方法二:
把出现的符合范围的数swap到下标和数对应的位置,再次遍历,数和下标不对应则是第一个没出现的数。注意处理有重复数字。

 1 class Solution {
 2 public:
 3     int firstMissingPositive(int A[], int n) {
 4         int i;
 5         for(i = 0; i < n; i ++)
 6             while(A[i] <= n && A[i] > 0 && A[i] != i + 1 && A[A[i] - 1] != A[i]) 
 7                 swap(A[i], A[A[i] - 1]);
 8         for(i = 0; i < n; i ++)
 9             if(A[i] != i + 1) return i + 1;
10         return i + 1;
11     }
12 };
View Code

 

Combination Sum

基础DFS

 1 class Solution {
 2 public:
 3     vector<int> tmp;
 4     vector<vector<int> > ans;
 5     void DFS(vector<int> &num, int ith, int now, int target)
 6     {
 7         if(now == target)
 8         {
 9             ans.push_back(tmp);
10             return;
11         }
12         if(ith == num.size()) return;
13         int cnt = 0;
14         while(now <= target)
15         {
16             DFS(num, ith + 1, now, target);
17             now += num[ith];
18             cnt ++;
19             tmp.push_back(num[ith]);
20         }
21         while(cnt --) tmp.pop_back();
22     }
23     vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
24         sort(candidates.begin(), candidates.end());
25         DFS(candidates, 0, 0, target);
26         return ans;
27     }
28 };
View Code

 

Combination Sum II

如果一个数没有被用,那么后面重复的这个数就别用,避免重复解。

 1 class Solution {
 2 public:
 3     vector<int> tmp;
 4     vector<vector<int> > ans;
 5     void DFS(vector<int> &num, int ith, int now, int target)
 6     {
 7         if(now == target)
 8         {
 9             ans.push_back(tmp);
10             return;
11         }
12         if(ith == num.size()) return;
13         int nex;
14         for(nex = ith + 1; nex < num.size() && num[nex] == num[ith]; nex ++);
15         DFS(num, nex, now, target);
16         if(num[ith] + now <= target)
17         {
18             now += num[ith];
19             tmp.push_back(num[ith]);
20             DFS(num, ith + 1, now, target);
21             tmp.pop_back();
22         }
23     }
24     vector<vector<int> > combinationSum2(vector<int> &num, int target) {
25         sort(num.begin(), num.end());
26         DFS(num, 0, 0, target);
27         return ans;
28     }
29 };
View Code

 

Count and Say

直接模拟,递推。

 1 class Solution {
 2 public:
 3     string countAndSay(int n) {
 4         string f[2];
 5         f[0] = "1";
 6         for(int i = 1; i < n; i ++)
 7         {
 8             f[i & 1].clear();
 9             for(int j = 0; j < f[i & 1 ^ 1].length();)
10             {
11                 int cnt;
12                 char x = f[i & 1 ^ 1][j];
13                 for(cnt = 0; j < f[i & 1 ^ 1].length() && f[i & 1 ^ 1][j] == x; cnt ++, j ++);
14                 f[i & 1] += '0' + cnt;
15                 f[i & 1] += x;
16             }
17         }
18         return f[n & 1 ^ 1];
19     }
20 };
View Code

 

Sudoku Solver

这道题考察回溯和数独结果的判断。ACM做过,就直接拿dancing links代码了,4ms。

关于dancing links,对于面试题来说变态了些,应该不至于考察。

  1 class Solution {
  2 public:
  3     int rw[10], cl[10], in[10], RW[81], CL[81], IN[81], goal;
  4     char buf[100];
  5     void Mark(int i, int num)
  6     {
  7         rw[RW[i]] ^= 1 << num;
  8         cl[CL[i]] ^= 1 << num;
  9         in[IN[i]] ^= 1 << num;
 10     }
 11     void init()
 12     {
 13         int i;
 14         for(i = 0; i < 10; ++ i)
 15             cl[i] = rw[i] = in[i] = 0;
 16         for(i = goal = 0; buf[i]; ++ i)
 17             goal += buf[i] == '.';
 18         for(i = 0; i < 81; ++ i)
 19         {
 20             RW[i] = i / 9, CL[i] = i % 9, IN[i] = i / 3 % 3 + i / 27 * 3;
 21             if(buf[i] != '.')
 22                 Mark(i, buf[i] - '1');
 23         }
 24     }
 25     inline int Judge(int i, int num)
 26     {return ~(rw[RW[i]] | cl[CL[i]] | in[IN[i]]) & (1 << num);}
 27     int Oper(int sx, int k, int cur)
 28     {
 29         Mark(sx, k), buf[sx] = k + '1';
 30         if(dfs(cur + 1)) return 1;
 31         Mark(sx, k), buf[sx] = '.';
 32         return 0;
 33     }
 34     int JudgeRWCLIN(int cur)
 35     {
 36         int i, j, k, x, cnt, sx;
 37         for(i = 0; i < 9; ++ i)
 38             for(k = 0; k < 9; ++ k)
 39             {
 40                 if(~rw[i] & (1 << k))
 41                 {
 42                     for(j = cnt = 0; j < 9; ++ j)
 43                     {
 44                         x = i * 9 + j;
 45                         if(buf[x] == '.' && Judge(x, k)) ++ cnt, sx = x;
 46                     }
 47                     if(cnt == 0) return 0;
 48                     else if(cnt == 1)
 49                         return Oper(sx, k, cur);
 50                 }
 51                 if(~cl[i] & (1 << k))
 52                 {
 53                     for(j = cnt = 0; j < 9; ++ j)
 54                     {
 55                         x = j * 9 + i;
 56                         if(buf[x] == '.' && Judge(x, k)) ++ cnt, sx = x;
 57                     }
 58                     if(cnt == 0) return 0;
 59                     else if(cnt == 1)
 60                         return Oper(sx, k, cur);
 61                 }
 62                 if(~in[i] & (1 << k))
 63                 {
 64                     for(j = cnt = 0; j < 9; ++ j)
 65                     {
 66                         x = i / 3 * 27 + j / 3 * 9 + i % 3 * 3 + j % 3;
 67                         if(buf[x] == '.' && Judge(x, k)) ++ cnt, sx = x;
 68                     }
 69                     if(cnt == 0) return 0;
 70                     else if(cnt == 1)
 71                         return Oper(sx, k, cur);
 72                 }
 73             }
 74         return 2;
 75     }
 76                         
 77         
 78     bool dfs(int cur)
 79     {
 80         int i, j, num, cnt;
 81         if(cur == goal) return true;
 82         for(i = 0; i < 81; ++ i)
 83             if(buf[i] == '.')
 84             {
 85                 for(j = cnt = 0; j < 9; ++ j)
 86                     if(Judge(i, j)) ++ cnt, num = j;
 87                 if(cnt == 0) return false;
 88                 if(cnt == 1)
 89                         return Oper(i, num, cur);
 90             }
 91         if((num = JudgeRWCLIN(cur)) == 0) return false;
 92         else if(num == 1) return true;
 93         for(i = 0; i < 81; ++ i)
 94             if(buf[i] == '.')
 95             {
 96                 for(j = 0; j < 9; ++ j)
 97                     if(Judge(i, j))
 98                     {
 99                         Mark(i, j), buf[i] = j + '1';
100                         if(dfs(cur + 1)) return true;
101                         Mark(i, j), buf[i] = '.';
102                     }
103             }
104         return false;
105     }
106     void solveSudoku(vector<vector<char> > &board) {
107         int site = 0;
108         for(int i = 0; i < 9; i ++)
109             for(int j = 0; j < 9; j ++)
110                 buf[site ++] = board[i][j];
111         init();
112         dfs(0);
113         site = 0;
114         for(int i = 0; i < 9; i ++)
115             for(int j = 0; j < 9; j ++)
116                 board[i][j] = buf[site ++];
117     }
118 };
View Code

 

Valid Sudoku

行列九宫格都判断一下。

 1 class Solution {
 2 public:
 3     bool isValidSudoku(vector<vector<char> > &board) {
 4         bool flag[3][9][9];
 5         memset(flag, false, sizeof(flag));
 6         for(int i = 0; i < 9; i ++)
 7         {
 8             for(int j = 0; j < 9; j ++)
 9             {
10                 if(board[i][j] != '.')
11                 {
12                     int x = board[i][j] - '1';
13                     if(flag[0][i][x] == true) return false;
14                     flag[0][i][x] = true;
15                     if(flag[1][j][x] == true) return false;
16                     flag[1][j][x] = true;
17                     if(flag[2][i / 3 * 3 + j / 3][x] == true) return false;
18                     flag[2][i / 3 * 3 + j / 3][x] = true;
19                 }
20             }
21         }
22         return true;
23     }
24 };
View Code

 

Search Insert Position

 二分

 1 class Solution {
 2 public:
 3     int searchInsert(int A[], int n, int target) {
 4         int left, right, mid;
 5         for(left = 0, right = n; left < right; )
 6         {
 7             mid = left + right >> 1;
 8             if(A[mid] == target) return mid;
 9             if(A[mid] > target) right = mid;
10             else left = mid + 1;
11         }
12         return left;
13     }
14 };
View Code

 

Search for a Range

二分,容易错。可以用lower_bound和upper_bound。

手工代码:

 1 class Solution {
 2 public:
 3     vector<int> searchRange(int A[], int n, int target) {
 4         int left, right, mid, l, r;
 5         for(left = 0, right = n; left < right; )
 6         {
 7             mid = left + right >> 1;
 8             if(A[mid] >= target) right = mid;
 9             else left = mid + 1;
10         }
11         l = left;
12         for(left = 0, right = n; left < right; )
13         {
14             mid = left + right >> 1;
15             if(A[mid] > target) right = mid;
16             else left = mid + 1;
17         }
18         r = left - 1;
19         if(l >= n || A[l] != target) return vector<int>(2, -1);
20         vector<int> ans = {l, r};
21         return ans;
22     }
23 };
View Code

STL:

 1 class Solution {
 2 public:
 3     vector<int> searchRange(int A[], int n, int target) {
 4         int l = lower_bound(A, A + n, target) - A;
 5         int r = upper_bound(A, A + n, target) - A;
 6         if(l == n || A[l] != target) return vector<int>(2, -1);
 7         vector<int> ans = {l, r - 1};
 8         return ans;
 9     }
10 };
View Code

 

Search in Rotated Sorted Array

还是二分,但是要判断一下 mid 在哪部分里。

 1 class Solution {
 2 public:
 3     int search(int A[], int n, int target) {
 4         int left = 0, right = n - 1, mid;
 5         while(left < right)
 6         {
 7             mid = left + right >> 1;
 8             if(A[mid] == target) return mid;
 9             if(A[mid] >= A[left])
10             {
11                 if(target < A[mid] && A[left] <= target) right = mid;
12                 else left = mid + 1;
13             }
14             else
15             {
16                 if(target <= A[right] && A[mid] < target) left = mid + 1;
17                 else right = mid;
18             }
19         }
20         return A[left] == target ? left : -1;
21     }
22 };
View Code

 

Longest Valid Parentheses

这道题时间限制在O(n),用一个 stack 实现括号配对+统计, 为了方便实现,写成数组的形式。

对不同深度的括号配对统计个数,一层配对成功把该层统计结果加给上一层,这一层清空。

 1 class Solution {
 2 public:
 3     int longestValidParentheses(string s) {
 4         vector<int> cnt(1, 0);
 5         int i, ans;
 6         for(i = ans = 0; i < s.length(); i ++)
 7         {
 8             if(s[i] == '(')
 9                 cnt.push_back(0);
10             else
11             {
12                 if(cnt.size() > 1)
13                 {
14                     cnt[cnt.size() - 2] += *cnt.rbegin() + 2;
15                     cnt.pop_back();
16                     ans = max(ans, *cnt.rbegin());
17                 }
18                 else
19                     cnt[0] = 0;
20             }
21         }
22         return ans;
23     }
24 };
View Code

 

Next Permutation

从后往前找到第一个非降序的 num[i],再重新从后往前找到第一个比 num[i] 大的,swap(num[i], num[j]),再把 i 之后的排序。

 1 class Solution {
 2 public:
 3     void nextPermutation(vector<int> &num) {
 4         int i, j;
 5         for(i = num.size() - 2; i >= 0 && num[i] >= num[i + 1]; i --);
 6         for(j = num.size() - 1; j > i && num[j] <= num[i]; j --);
 7         if(i < j)
 8         {
 9             swap(num[i], num[j]);
10             sort(num.begin() + i + 1, num.end());
11         }
12         else
13             reverse(num.begin(), num.end());
14     }
15 };
View Code

 

Substring with Concatenation of All Words

直观的方法是枚举起点,判断这个起点下的子串是否合法,O(S.length()*L.size())。

其实可以把 S 分成 L[0].length() 个序列,每个序列都是元素间相隔 L[0].length() 的“string开头”,这些序列互不相干。

如下表,假设 L[0].length()=4,第一行数字为分组组号,第二行数字表示 S 的序号。

(0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

对每个序列,用单调队列的思路来处理,一个一个子串入队,当包含了 L 中所有 string 的时候,保存答案。当新元素入队时超出统计允许时——即 L 中有 3 个 "str", 而这时候遇到第 4 个——则开始出队,一直出到队列里不足 3 个 "str",然后继续。

这样复杂度为O(L[0].length() * S.length() / L[0].length()) = O(S.length())。目前提交结果是180ms。

 1 class Solution {
 2 public:
 3     vector<int> findSubstring(string S, vector<string> &L) {
 4         vector<int> ans;
 5         if(L.size() == 0) return ans;
 6         unordered_map<string, int> mp, sum;
 7         int llen = L[0].length(), i, front, rear;
 8         for(int i = 0; i < L.size(); i ++)
 9         {
10             if(!mp.count(L[i])) mp[L[i]] = 1;
11             else mp[L[i]] ++;
12         }
13         for(i = 0; i < llen; i ++)
14         {
15             sum = mp;
16             int cnt = 0;
17             for(front = rear = i; front + llen <= S.length(); front += llen)
18             {
19                 string tmp = S.substr(front, llen);
20                 if(sum.count(tmp))
21                 {
22                     if(sum[tmp] > 0)
23                     {
24                         sum[tmp] --;
25                         cnt ++;
26                         if(cnt == L.size())
27                         {
28                             ans.push_back(rear);
29                         }
30                     }
31                     else
32                     {
33                         while(sum[tmp] == 0)
34                         {
35                             string ntmp = S.substr(rear, llen);
36                             sum[ntmp] ++;
37                             cnt --;
38                             rear += llen;
39                         }
40                         sum[tmp] --;
41                         cnt ++;
42                         if(cnt == L.size())
43                         {
44                             ans.push_back(rear);
45                         }
46                     }
47                 }
48                 else
49                 {
50                     while(rear < front)
51                     {
52                         string ntmp = S.substr(rear, llen);
53                         sum[ntmp] ++;
54                         cnt --;
55                         rear += llen;
56                     }
57                     rear += llen;
58                     cnt = 0;
59                 }
60             }
61         }
62         return ans;
63     }
64 };
View Code

 

Divide Two Integers

假设 dividend 与 divisor 正负一致, divisor^(2^n) 为最接近 dividend 的 divisor 的幂,那么令 newdividend = dividend - divisor^(2^n),ans = ans + 2^n,问题就更新为 newdividend 除以 divisor,如此迭代。用 divisor^(2^n) 是因为 divisor 不停地辗转加自己就可以得到了。

有 -2147483648 这样的极限数据,因为 int 范围是 -2147483648~+2147483647,发现负数比正数范围“多1”,干脆把所有数都转成负数算,这样就避免用 long long 了。最后考察一下flag。

(如果转成正数的话,int 的 -(-2147483648)还是 -2147483648。。)

 1 class Solution {
 2 public:
 3     int divide(int dividend, int divisor) {
 4         bool flag = false;
 5         if(divisor > 0) divisor = -divisor, flag ^= true;
 6         if(dividend > 0) dividend = -dividend, flag ^= true;
 7         int ans = 0, res = divisor, ex = 1;
 8         if(divisor < dividend) return 0;
 9         while(res >= dividend - res)
10         {
11             res += res;
12             ex += ex;
13         }
14         while(res <= divisor && dividend)
15         {
16             if(res >= dividend)
17             {
18                 dividend -= res;
19                 ans += ex;
20             }
21             res >>= 1;
22             ex >>= 1;
23         }
24         return flag ? -ans : ans;
25     }
26 };
View Code

 

Implement strStr()

 KMP。

 1 class Solution {
 2 public:
 3     char *strStr(char *haystack, char *needle) {
 4         int hlen = (int)strlen(haystack), nlen = (int)strlen(needle);
 5         if(nlen == 0) return haystack;
 6         vector<int> next(nlen + 1);
 7         next[0] = -1;
 8         for(int i = 0, j = -1; i < nlen;)
 9         {
10             if(j == -1 || needle[i] == needle[j])
11             {
12                 i ++, j ++;
13                 if(needle[i] != needle[j]) next[i] = j;
14                 else next[i] = next[j];
15             }
16             else j = next[j];
17         }
18         for(int i = 0, j = 0; i < hlen;)
19         {
20             if(j == -1 || haystack[i] == needle[j])
21                 i ++, j ++;
22             else j = next[j];
23             if(j == nlen) return haystack + i - j;
24         }
25         return NULL;
26     }
27 };
View Code

 

Remove Element

两个游标 i, j 异步挪动,把不等于给定值的数往前挪。

1 class Solution {
2 public:
3     int removeElement(int A[], int n, int elem) {
4         int i, j;
5         for(i = j = 0; i < n; i ++)
6             if(A[i] != elem) A[j ++] = A[i];
7         return j;
8     }
9 };
View Code

 

Remove Duplicates from Sorted Array

两个游标 i, j 异步挪动,不重复值往前挪。

1 class Solution {
2 public:
3     int removeDuplicates(int A[], int n) {
4         int i, j;
5         for(i = j = 1; i < n; i ++)
6             if(A[i] != A[i - 1]) A[j ++] = A[i];
7         return n ? j : 0;
8     }
9 };
View Code

 

Reverse Nodes in k-Group

用头插法来做的,顺序插入到首节点之后,就反转了。每 k 个节点处理之后,把首节指针点移动到下 k 个的开头。最后面不足 k 个的话,再反转回来。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     int Reverse(ListNode *&pre, ListNode *&p, int k)
12     {
13         int i;
14         ListNode *nex, *tmp;
15         for(i = 1; p != NULL; i ++, p = tmp)
16         {
17             if(i == 1) nex = p;
18             tmp = p->next;
19             p->next = pre->next;
20             pre->next = p;
21             if(i == k) i = 0, pre = nex;
22         }
23         nex->next = NULL;
24         return i;
25     }
26     ListNode *reverseKGroup(ListNode *head, int k) {
27         if(head == NULL) return NULL;
28         ListNode *tmphead = new ListNode(0), *pre = tmphead, *p = head;
29         tmphead->next = head;
30         if(Reverse(pre, p, k) != 1)
31         {
32             p = pre->next;
33             Reverse(pre, p, k);
34         }
35         return tmphead->next;
36     }
37 };
View Code

 

Swap Nodes in Pairs

Reverse Nodes in k-Group的简化版。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *swapPairs(ListNode *head) {
12         if(head == NULL) return NULL;
13         ListNode *tmphead = new ListNode(0), *pre = tmphead, *p = head, *tmp, *nex;
14         tmphead->next = head;
15         for(int i = 0; p != NULL; i ++, p = tmp)
16         {
17             if(i & 1 ^ 1) nex = p;
18             tmp = p->next;
19             p->next = pre->next;
20             pre->next = p;
21             if(i & 1) pre = nex;
22         }
23         nex->next = NULL;
24         return tmphead->next;
25     }
26 };
View Code

 

Merge k Sorted Lists

一个堆(这里用了优先级队列),把所有 list 的首元素放堆里,O(logn)取得最小值插入新队列,异步推进。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     struct comp
12     {
13         bool operator()(ListNode *a,ListNode *b)
14         {return a->val > b->val;}
15     };
16     ListNode *mergeKLists(vector<ListNode *> &lists) {
17         ListNode *tmphead = new ListNode(0), *p = tmphead;
18         priority_queue<ListNode*, vector<ListNode*>, comp> q;
19         for(int i = 0; i < lists.size(); i ++)
20             if(lists[i] != NULL) q.push(lists[i]);
21         while(!q.empty())
22         {
23             p->next = q.top();
24             p = p->next;
25             q.pop();
26             if(p ->next != NULL) q.push(p->next);
27         }
28         return tmphead->next;
29     }
30 };
View Code

 

Generate Parentheses

DFS,保持当前右括号不多于左括号。

 1 class Solution {
 2 public:
 3     string tmp;
 4     vector<string> ans;
 5     void DFS(int left, int right, int n)
 6     {
 7         if(left == right && left == n)
 8         {
 9             ans.push_back(tmp);
10             return;
11         }
12         if(left < n)
13         {
14             tmp[left + right] = '(';
15             DFS(left + 1, right, n);
16         }
17         if(right < left)
18         {
19             tmp[left + right] = ')';
20             DFS(left, right + 1, n);
21         }
22     }
23     vector<string> generateParenthesis(int n) {
24         tmp.resize(n << 1);
25         DFS(0, 0, n);
26         return ans;
27     }
28 };
View Code

 

Valid Parentheses

用栈配对。

 1 class Solution {
 2 public:
 3     bool isValid(string s) {
 4         stack<char> st;
 5         for(int i = 0; i < s.length(); i ++)
 6         {
 7             switch(s[i])
 8             {
 9                 case '(': st.push('('); break;
10                 case '[': st.push('['); break;
11                 case '{': st.push('{'); break;
12                 case ')':
13                     if(st.empty() || st.top() != '(') return false;
14                     st.pop(); break;
15                 case ']':
16                     if(st.empty() || st.top() != '[') return false;
17                     st.pop(); break;
18                 case '}':
19                     if(st.empty() || st.top() != '{') return false;
20                     st.pop(); break;
21                     
22             }
23         }
24         return st.empty();
25     }
26 };
View Code

 

Remove Nth Node From End of List

两个指针相隔 n 距离,前面的指针到了末尾,后面的指针就是删除的位置。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *removeNthFromEnd(ListNode *head, int n) {
12         ListNode *pre, *slow, *quick;
13         ListNode *newhead = new ListNode(0);
14         newhead->next = head;
15         int i = 0;
16         for(pre = slow = quick = newhead; quick != NULL; i ++)
17         {
18             pre = slow;
19             if(i >= n) slow = slow->next;
20             quick = quick->next;
21         }
22         pre->next = slow->next;
23         free(slow);
24         return newhead->next;
25     }
26 };
View Code

 

Letter Combinations of a Phone Number

基础DFS。

 1 class Solution {
 2 public:
 3     const vector<string> v = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
 4     vector<string> ans;
 5     string tmp;
 6     void DFS(int cur, string d)
 7     {
 8         if(cur == d.length())
 9         {
10             ans.push_back(tmp);
11             return;
12         }
13         for(int i = 0; i < v[d[cur] - '0'].length(); i ++)
14         {
15             tmp[cur] = v[d[cur] - '0'][i];
16             DFS(cur + 1, d);
17         }
18     }
19     vector<string> letterCombinations(string digits) {
20         tmp.resize(digits.length());
21         DFS(0, digits);
22         return ans;
23     }
24 };
View Code

 

4Sum

尝试了O(n^2)的,但是应该常数很大吧,超时了。就是哈希存两两的和,然后通过查哈希表找到 两两+两两,要判断数字重复情况。这题数据量挺大的,O(n^3)如果用不太好的方式实现的话也会超。

O(n^3)方法:先对num排序,然后从两头枚举两个数,O(n^2),后两个数在前两个数之间的两端开始,和小了左边的往右,和大了右边的往左调整,O(n),总共O(n^3)。

 1 class Solution {
 2 public:
 3     vector<vector<int> > ans;
 4     vector<vector<int> > fourSum(vector<int> &num, int target) {
 5         if(num.size() < 4) return ans;
 6         sort(num.begin(), num.end());
 7         for(int left = 0; left < num.size() - 3;)
 8         {
 9             for(int right = num.size() - 1; right > left + 2;)
10             {
11                 int ml = left + 1, mr = right - 1;
12                 while(ml < mr)
13                 {
14                     int tmpsum = num[left] + num[right] + num[ml] + num[mr];
15                     if(tmpsum > target) mr --;
16                     else if(tmpsum < target) ml ++;
17                     else
18                     {
19                         vector<int> tmp = {num[left], num[ml], num[mr], num[right]};
20                         ans.push_back(tmp);
21                         ml ++;
22                         mr --;
23                     }
24                     for(; ml != left + 1 && ml < mr && num[ml] == num[ml - 1]; ml ++);
25                     for(; mr != right - 1 && ml < mr && num[mr] == num[mr + 1]; mr --);
26                 }
27                 for(right --; right > left + 2 && num[right] == num[right + 1]; right --);
28             }
29             for(left ++; left < num.size() - 3 && num[left] == num[left - 1]; left ++);
30         }
31         return ans;
32     }
33 };
View Code

 

3Sum Closest

O(n^2),先排序,枚举第一个数,后两个数一个在第一个数后边一个开始,一个从 末尾开始,和4Sum类似调整。

 1 class Solution {
 2 public:
 3     int threeSumClosest(vector<int> &num, int target) {
 4         bool findans = false;
 5         int ans;
 6         sort(num.begin(), num.end());
 7         for(int i = 0; i < num.size(); i ++)
 8         {
 9             for(int left = i + 1, right = num.size() - 1; left < right;)
10             {
11                 int tmpsum = num[i] + num[left] + num[right];
12                 if(tmpsum > target) right --;
13                 else if(tmpsum < target) left ++;
14                 else return tmpsum;
15                 if(!findans || abs(tmpsum - target) < abs(ans - target))
16                     ans = tmpsum, findans = true;
17             }
18         }
19         return ans;
20     }
21 };
View Code

 

3Sum

同上。

 1 class Solution {
 2 public:
 3     vector<vector<int> > ans;
 4     vector<vector<int> > threeSum(vector<int> &num) {
 5         if(num.size() < 3) return ans;
 6         sort(num.begin(), num.end());
 7         for(int i = 0; i < num.size();)
 8         {
 9             for(int left = i + 1, right = num.size() - 1; left <right;)
10             {
11                 int tmpsum = num[i] + num[left] + num[right];
12                 if(tmpsum < 0) left ++;
13                 else if(tmpsum > 0) right --;
14                 else
15                 {
16                     vector<int> tmp = {num[i], num[left], num[right]};
17                     ans.push_back(tmp);
18                     left ++;
19                     right --;
20                 }
21                 for(; left != i + 1 && left < right && num[left] == num[left - 1]; left ++);
22                 for(; right != num.size() - 1 && left < right && num[right] == num[right + 1]; right --);
23             }
24             for(i ++; i < num.size() && num[i] == num[i - 1]; i ++);
25         }
26         return ans;
27     }
28 };
View Code

 

Longest Common Prefix

 一个一个扫

 1 class Solution {
 2 public:
 3     string ans;
 4     string longestCommonPrefix(vector<string> &strs) {
 5         if(strs.size() == 0) return ans;
 6         if(strs.size() == 1) return strs[0];
 7         for(int j = 0; ; j ++)
 8         {
 9             for(int i = 1; i < strs.size(); i ++)
10                 if(strs[i].size() == j || strs[i][j] != strs[i - 1][j]) return ans;
11             ans += strs[0][j];
12         }
13         return ans;
14     }
15 };
View Code

 

Roman to Integer

各有各的方法,重点是记录“上一个”数比“这个”数大或小,来确定谁减谁。基本是右结合的,所以从后往前扫好处理些。

class Solution {
public:
    int ro[128];
    int romanToInt(string s) {
        ro['I'] = 1;
        ro['V'] = 5;
        ro['X'] = 10;
        ro['L'] = 50;
        ro['C'] = 100;
        ro['D'] = 500;
        ro['M'] = 1000;
        int ans = -1, last;
        for(int i = s.length() - 1; i >= 0; i --)
        {
            if(ans == -1) ans = ro[s[i]];
            else
            {
                if(last > ro[s[i]]) ans -= ro[s[i]];
                else ans += ro[s[i]];
            }
            last = ro[s[i]];
        }
        return ans;
    }
};
View Code

 

Integer to Roman

每个十进制位格式是一样的,只是字母替换一下。

 1 class Solution {
 2 public:
 3     vector<string> table = {"", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"};
 4     string ro = "IVXLCDM";
 5     char convert(char x, int i)
 6     {
 7         if(x == 'I') return ro[i];
 8         if(x == 'V') return ro[i + 1];
 9         if(x == 'X') return ro[i + 2];
10     }
11     string intToRoman(int num) {
12         string ans;
13         for(int i = 0; num; i += 2, num /= 10)
14         {
15             int x = num % 10;
16             string tmp = table[x];
17             for(int j = 0; j < tmp.size(); j ++)
18                 tmp[j] = convert(tmp[j], i);
19             ans = tmp + ans;
20         }
21         return ans;
22     }
23 };
View Code

 

Container With Most Water

从两端开始枚举,较高的挡板往中间枚举的话一定无法得到更优解,故反复从较低挡板向中间枚举,O(n)。

 1 class Solution {
 2 public:
 3     int maxArea(vector<int> &height) {
 4         int left = 0, right = height.size() - 1, ans = -1;
 5         while(left < right)
 6         {
 7             ans = max(ans, min(height[left], height[right]) * (right - left));
 8             if(height[left] < height[right]) left ++;
 9             else right --;
10         }
11         return ans;
12     }
13 };
View Code

 

Regular Expression Matching

每遇到一个 '*' ,问题都会出现分枝,需要用到栈或者递归。

没有 '*' 的情况好处理,遇到 '*' 的时候,穷举所有匹配长度。

 1 class Solution {
 2 public:
 3     bool isMatch(const char *s, const char *p) {
 4         if(*p == 0) return *s == 0;
 5         if(*(p + 1) != '*')
 6         {
 7             if(*s && (*s == *p || *p == '.'))
 8                return isMatch(s + 1, p + 1);
 9             return false;
10         }
11         else
12         {
13             for(; *s && (*s == *p || *p == '.'); s ++)
14                 if(isMatch(s, p + 2)) return true;
15             return isMatch(s, p + 2);
16         }
17     }
18 };
View Code

 

Palindrome Number

首先处理负数的trick。然后主要思路就是通过 while(...) a = a * 10 + x % 10; 来将 x 翻转。

但是注意到 x 很大的时候,翻转的 x 会超出 int 范围,也许会刚好成为另一个和 a 得出的数相等的正数,所以不能完全翻转后判断,而可以在翻转恰好一半的时候判断。

 1 class Solution {
 2 public:
 3     bool isPalindrome(int x) {
 4         if(x < 0) return false;
 5         if(x == 0) return true;
 6         int a = 0, b = x, cnt = 1;
 7         while(x /= 10) cnt ++;
 8         for(; b && cnt >= 0; b /= 10, cnt -= 2) 
 9         {
10             if(cnt == 1) return a == b / 10;
11             else if(cnt == 0) return a == b;
12             a = a * 10 + b % 10;
13         }
14         return false;
15     }
16 };
View Code

 

String to Integer (atoi)

任何类似多符号、符号数字间有空格的小问题都直接输出 0,这就好办了。处理越界用 long long。

 1 class Solution {
 2 public:
 3     int atoi(const char *str) {
 4         long long ans = 0;
 5         bool flag = false;
 6         for(; *str == ' '; str ++);
 7         if(*str == '+') str ++;
 8         else if(*str == '-') flag = true, str ++;
 9         for(; isdigit(*str); str ++)
10         {
11             ans = ans * 10 + *str - '0';
12             if((flag ? -ans : ans) > INT_MAX) return INT_MAX;
13             else if((flag ? -ans : ans) < INT_MIN) return INT_MIN;
14         }
15         return (int)(flag ? -ans : ans);
16     }
17 };
View Code

 

Reverse Integer

还是关于越界的讨论,不过这道题本身没有设置处理方式,重点在于面试时的交流。

1 class Solution {
2 public:
3     int reverse(int x) {
4         int a = 0;
5         for( int b = x >= 0 ? x : -x; b; b /= 10)
6             a = a * 10 + b % 10;
7         return x >= 0 ? a : -a;
8     }
9 };
View Code

 

ZigZag Conversion

题意的 "z" 字形指一列nRows个,然后斜着往右上一格一个回到第一行,然后再一列nRows个。比如nRows=5,如下:

1       9       17       25    
2     8 10     16 18     24 26    
3   7   11   15   19   23   27  
4 6     12 14     20 22     28 30  
5       13       21       29    

每行字母在原字符串中的间隔是有规律的,虽然两层for循环,但是s中每个字母只访问了一次,O(n)。

 1 class Solution {
 2 public:
 3     string convert(string s, int nRows) {
 4         if(nRows == 1) return s;
 5         string ans;
 6         int a = (nRows << 1) - 2, b = 0;
 7         for(int i = 0; i < nRows; i ++, a -= 2, b += 2)
 8         {
 9             bool flag = false;
10             for(int j = i; j < s.length(); 
11                     j += flag ? (b ? b : a) : (a ? a : b), flag ^= 1)
12                 ans += s[j];
13         }
14         return ans;
15     }
16 };
View Code

 

Longest Palindromic Substring

网上O(n)的方法是厉害啊。。。简单解释如下:

1、预处理字符串,前后加“哨兵”字符比如 '!',每个字母旁边加辅助字符比如'#',这样例如字符串 s = "ababbcbb" 就变成 tmp = "!#a#b#a#b#b#c#b#b#!"。这样的好处是不用讨论回文串长度的奇偶。

2、对转化后的串,维护一个 center 和一个 reach,center 是当前已发现的 reach 最远的回文串中心位置,reach 是这个回文串最右端的位置,center和reach可初始化为 1,即第一个'#'的位置。

3、维护一个数组 vector<int> r(tmp.length()),r[i] 表示 i 位置为中心的回文串半径。

4、在考察位置 i 的时候,所有 j < i 的 r[j] 都是已知的子问题。如果 i 在 reach 的左边,则 i 包含在以 center 为中心的回文串中,那么可以想到,如果和 i 关于 center 对称位置的 mirrori 为中心的回文串覆盖范围没有到达 center 为中心的回文串边缘,则 i 为中心的回文串肯定和 mirrori 的一样。而如果 mirrori 的回文串到达了边缘甚至超过,或者 i 本来就在 reach 的右边,那么对 i 为中心的回文串进行一次扩展,则结果 或者刚好不扩展,或者一定更新了reach。无论怎样,这里都得到了 r[i]。知道了所有 r[i],答案就出来了。

核心问题在于第4步“对 i 为中心的回文串进行扩展”的复杂度。每次发生“对 i 扩展“,必然是对 reach 的扩展(也可能刚好不扩展,这个不影响复杂度),而 reach 的扩展范围是 tmp 的长度大约 2n,所以总复杂度为 O(n)。

 1 class Solution {
 2 public:
 3     string longestPalindrome(string s) {
 4         int center = 1, reach = 1, ansstart = 0, anslength = 0;
 5         string tmp = "!#";
 6         for(int i = 0; i < s.length(); i ++)
 7             tmp += s[i], tmp += '#';
 8         tmp + '!';
 9         vector<int> r(tmp.length());
10         for(int i = 2; i < tmp.length(); i ++)
11         {
12             int mirrori = center * 2 - i;
13             r[i] = reach > i ? min(r[mirrori], reach - i) : 0;
14             for(; tmp[i + r[i] + 1] == tmp[i - r[i] - 1]; r[i] ++);
15             if(i + r[i] > reach) reach = i + r[i], center = i;
16             if(r[i] > anslength)
17             {
18                 ansstart = i - r[i] >> 1;
19                 anslength = r[i];
20             }
21         }
22         return s.substr(ansstart, anslength);
23     }
24 };
View Code

 

Add Two Numbers

大整数加法的链表版。

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode(int x) : val(x), next(NULL) {}
 7  * };
 8  */
 9 class Solution {
10 public:
11     ListNode *addTwoNumbers(ListNode *l1, ListNode *l2) {
12         ListNode *ans = new ListNode(0), *p = ans;
13         int cur = 0;
14         while(l1 != NULL || l2 != NULL || cur)
15         {
16             p->val = (l1 ? l1->val : 0) + (l2 ? l2->val : 0) + cur;
17             cur = p->val / 10;
18             p->val %= 10;
19             if(l1) l1 = l1->next;
20             if(l2) l2 = l2->next;
21             if(l1 || l2 || cur)
22                 p->next = new ListNode(0);
23             p = p->next;
24         }
25         return ans;
26     }
27 };
View Code

 

Longest Substring Without Repeating Characters

维护一个不重复字符的区间。

代码一:

 1 class Solution {
 2 public:
 3     int lengthOfLongestSubstring(string s) {
 4         vector<bool> isin(128, false);
 5         int ans = 0;
 6         for(int front = 0, rear = 0; front < s.length(); front ++)
 7         {
 8             if(isin[s[front]])
 9                 for(; rear < front && isin[s[front]]; isin[s[rear]] = false, rear ++);
10             isin[s[front]] = true;
11             ans = max(ans, front - rear + 1);
12         }
13         return ans;
14     }
15 };
View Code

代码二:

 1 class Solution {
 2 public:
 3     int lengthOfLongestSubstring(string s) {
 4         vector<int> site(128, -1);
 5         int nowstart = -1, ans = 0;
 6         for(int i = 0; i < s.length(); i ++)
 7         {
 8             if(site[s[i]] >= nowstart)
 9                 nowstart = site[s[i]] + 1;
10             site[s[i]] = i;
11             ans = max(i - nowstart + 1, ans);
12         }
13         return ans;
14     }
15 };
View Code

 

Median of Two Sorted Arrays

 如果 A[pa] < B[pb],那么 A[pa] 一定在 A 与 B 合并后的前 pa + pb + 2 个数中。

证明: A 中有 pa + 1 个数 <= A[pa],B 中有小于 pb + 1 个数 <= A[pa],合并后有少于pa + pb + 2 个数 <= A[pa]。

利用这个性质迭代找 A 与 B 合并后的第 k 大数。

 1 class Solution {
 2 public:
 3     int findKth(int A[], int m, int B[], int n, int k)
 4     {
 5         int pm, pn;
 6         while(true)
 7         {
 8             if(m == 0) return B[k - 1];
 9             if(n == 0) return A[k - 1];
10             if(k == 1) return min(A[k - 1], B[k - 1]);
11             if(m <= n) pm = min(k >> 1, m), pn = k - pm;
12             else pn = min(k >> 1, n), pm = k - pn;
13             if(A[pm - 1] < B[pn - 1]) A += pm, m -= pm, k -= pm;
14             else if(A[pm - 1] > B[pn - 1]) B += pn, n -= pn, k-= pn;
15             else break;
16         }
17         return A[pm - 1];
18     }
19     double findMedianSortedArrays(int A[], int m, int B[], int n) {
20         if((m + n) & 1) return findKth(A, m, B, n, (m + n >> 1) + 1);
21         else return (findKth(A, m, B, n, m + n >> 1) + 
22             findKth(A, m, B, n, (m + n >> 1) + 1)) * 0.5;
23     }
24 };
View Code

 

Two Sum

哈希存位置,O(n)。

 1 class Solution {
 2 public:
 3     vector<int> twoSum(vector<int> &numbers, int target) {
 4         unordered_map<int, int> mp;
 5         vector<int> ans;
 6         for(int i = 0; i < numbers.size(); i ++)
 7         {
 8             if(mp.count(target - numbers[i]))
 9             {
10                 ans.push_back(mp[target - numbers[i]] + 1);
11                 ans.push_back(i + 1);
12                 break;
13             }
14             if(!mp.count(numbers[i])) mp[numbers[i]] = i;
15         }
16         return ans;
17     }
18 };
View Code

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!