Calculating the cosine similarity between all the rows of a dataframe in pyspark

五迷三道 提交于 2019-11-27 11:24:20

问题


I have a dataset containing workers with their demographic information like age gender,address etc and their work locations. I created an RDD from the dataset and converted it into a DataFrame.

There are multiple entries for each ID. Hence, I created a DataFrame which contained only the ID of the worker and the various office locations' that he/she had worked.

    |----------|----------------|
    | **ID**    **Office_Loc**  |
    |----------|----------------|
    |   1      |Delhi, Mumbai,  |
    |          | Gandhinagar    |
    |---------------------------|
    |   2      | Delhi, Mandi   | 
    |---------------------------|
    |   3      |Hyderbad, Jaipur|
    -----------------------------

I want to calculate the cosine similarity between each worker with every other worker based on their office locations'.

So, I iterated through the rows of the DataFrame, retrieving a single row from the DataFrame :

myIndex = 1
values = (ID_place_df.rdd.zipWithIndex()
            .filter(lambda ((l, v), i): i == myIndex)
            .map(lambda ((l,v), i): (l, v))
            .collect())

and then using map

    cos_weight = ID_place_df.select("ID","office_location").rdd\
  .map(lambda x: get_cosine(values,x[0],x[1]))

to calculated the cosine similarity between the extracted row and the whole DataFrame.

I do not think my approach is a good one since I am iterating through the rows of the DataFrame, it defeats the whole purpose of using spark. Is there a better way to do it in pyspark? Kindly advise.


回答1:


You can use the mllib package to compute the L2 norm of the TF-IDF of every row. Then multiply the table with itself to get the cosine similarity as the dot product of two by two L2norms:

1. RDD

rdd = sc.parallelize([[1, "Delhi, Mumbai, Gandhinagar"],[2, " Delhi, Mandi"], [3, "Hyderbad, Jaipur"]])
  • Compute TF-IDF:

    documents = rdd.map(lambda l: l[1].replace(" ", "").split(","))
    
    from pyspark.mllib.feature import HashingTF, IDF
    hashingTF = HashingTF()
    tf = hashingTF.transform(documents)
    

You can specify the number of features in HashingTF to make the feature matrix smaller (fewer columns).

    tf.cache()
    idf = IDF().fit(tf)
    tfidf = idf.transform(tf)
  • Compute L2norm:

    from pyspark.mllib.feature import Normalizer
    labels = rdd.map(lambda l: l[0])
    features = tfidf
    
    normalizer = Normalizer()
    data = labels.zip(normalizer.transform(features))
    
  • Compute cosine similarity by multiplying the matrix with itself:

    from pyspark.mllib.linalg.distributed import IndexedRowMatrix
    mat = IndexedRowMatrix(data).toBlockMatrix()
    dot = mat.multiply(mat.transpose())
    dot.toLocalMatrix().toArray()
    
        array([[ 0.        ,  0.        ,  0.        ,  0.        ],
               [ 0.        ,  1.        ,  0.10794634,  0.        ],
               [ 0.        ,  0.10794634,  1.        ,  0.        ],
               [ 0.        ,  0.        ,  0.        ,  1.        ]])
    

    OR: Using a Cartesian product and the function dot on numpy arrays:

    data.cartesian(data)\
        .map(lambda l: ((l[0][0], l[1][0]), l[0][1].dot(l[1][1])))\
        .sortByKey()\
        .collect()
    
        [((1, 1), 1.0),
         ((1, 2), 0.10794633570596117),
         ((1, 3), 0.0),
         ((2, 1), 0.10794633570596117),
         ((2, 2), 1.0),
         ((2, 3), 0.0),
         ((3, 1), 0.0),
         ((3, 2), 0.0),
         ((3, 3), 1.0)]
    

2. DataFrame

Since you seem to be using dataframes, you can use the spark mlpackage instead:

import pyspark.sql.functions as psf
df = rdd.toDF(["ID", "Office_Loc"])\
    .withColumn("Office_Loc", psf.split(psf.regexp_replace("Office_Loc", " ", ""), ','))
  • Compute TF-IDF:

    from pyspark.ml.feature import HashingTF, IDF
    hashingTF = HashingTF(inputCol="Office_Loc", outputCol="tf")
    tf = hashingTF.transform(df)
    
    idf = IDF(inputCol="tf", outputCol="feature").fit(tf)
    tfidf = idf.transform(tf)
    
  • Compute L2 norm:

    from pyspark.ml.feature import Normalizer
    normalizer = Normalizer(inputCol="feature", outputCol="norm")
    data = normalizer.transform(tfidf)
    
  • Compute matrix product:

    from pyspark.mllib.linalg.distributed import IndexedRow, IndexedRowMatrix
    mat = IndexedRowMatrix(
        data.select("ID", "norm")\
            .rdd.map(lambda row: IndexedRow(row.ID, row.norm.toArray()))).toBlockMatrix()
    dot = mat.multiply(mat.transpose())
    dot.toLocalMatrix().toArray()
    

    OR: using a join and a UDF for function dot:

    dot_udf = psf.udf(lambda x,y: float(x.dot(y)), DoubleType())
    data.alias("i").join(data.alias("j"), psf.col("i.ID") < psf.col("j.ID"))\
        .select(
            psf.col("i.ID").alias("i"), 
            psf.col("j.ID").alias("j"), 
            dot_udf("i.norm", "j.norm").alias("dot"))\
        .sort("i", "j")\
        .show()
    
        +---+---+-------------------+
        |  i|  j|                dot|
        +---+---+-------------------+
        |  1|  2|0.10794633570596117|
        |  1|  3|                0.0|
        |  2|  3|                0.0|
        +---+---+-------------------+
    

This tutorial lists different methods to multiply large scale matrices: https://labs.yodas.com/large-scale-matrix-multiplication-with-pyspark-or-how-to-match-two-large-datasets-of-company-1be4b1b2871e



来源:https://stackoverflow.com/questions/46758768/calculating-the-cosine-similarity-between-all-the-rows-of-a-dataframe-in-pyspark

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!