HDU 3089 (快速约瑟夫环)

北战南征 提交于 2020-01-01 20:58:43

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=3089

题目大意:一共n人。从1号开始,每k个人T掉。问最后的人。n超大。

解题思路

除去超大的n之外。就是个约瑟夫环的裸题。

约瑟夫环递推公式,n为人数,k为步长。

f(1)=0

f(n)=[f(n-1)+k]%i  i∈[2,n]

f(n)还要经过起始位置修正,设起始位置为s,即ans=[f(n)+s]%n。

基本约瑟夫环优化就是当k=1的时候,每次递推就是在+1,可以直接算出来快速跳过,f(n)=f(1)+n-1

 

当n超大的时候,可以照着这种思路快速简化递推过程。在递推后期,f(x)+k在很长的周期内<i,假设有m个周期,

那么这些周期合并后的结果相当于f(x)+m*k。可以快速跳过。条件限制是: f(x)+m*k<i+(m-1)

可以推出来:

当m=1时,条件限制: f(x)+k<i

当m=2是,条件限制: f(x+1)+k<i+1=f(x)+2*k<i+1

当m=m时,条件限制:f(x)+m*k<i+(m-1)

化简有m<(i-f(x)-1)/(k-1),若能整除,就是(i-f(x)-1)/(k-1)-1,否则就是(i-f(x)-1)/(k-1)直接取整。

这样,i+=m,f(x)+=m*k,快速跳过了中间过程。

若i+m>n,说明快速跳越界了,这时候可以直接算出f(n)=f(x)+(n-i-1)*m。

 

#include "cstdio"
#define LL long long
LL solve(LL n,LL k,LL s=1)
{
    if(k==1) return (n-1+s)%n;
    LL ans=0;
    //ans=(ans+k)%i
    for(LL i=2;i<=n;)
    {
        if(ans+k<i) //快速跳跃
        {
            LL leap;
            if((i-ans-1)%(k-1)==0) leap=(i-ans-1)/(k-1)-1;
            else leap=(i-ans-1)/(k-1);
            if(i+leap>n) return ((ans+(n+1-i)*k)+s)%n;
            i+=leap;
            ans+=leap*k;
        }
        else
        {
            ans=(ans+k)%i;
            i++;
        }
    }
    return (ans+s)%n;
}
int main()
{
    //freopen("in.txt","r",stdin);
    LL n,k;
    while(scanf("%I64d%I64d",&n,&k)!=EOF)
    {
        LL ans=solve(n,k);
        if(ans==0) printf("%I64d\n",n);
        else printf("%I64d\n",ans);
    }
}

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!