问题
I have a dataframe in Spark 1.6 and want to select just some columns out of it. The column names are like:
colA, colB, colC, colD, colE, colF-0, colF-1, colF-2
I know I can do like this to select specific columns:
df.select("colA", "colB", "colE")
but how to select, say "colA", "colB" and all the colF-* columns at once? Is there a way like in Pandas?
回答1:
First grab the column names with df.columns
, then filter down to just the column names you want .filter(_.startsWith("colF"))
. This gives you an array of Strings. But the select takes select(String, String*)
. Luckily select for columns is select(Column*)
, so finally convert the Strings into Columns with .map(df(_))
, and finally turn the Array of Columns into a var arg with : _*
.
df.select(df.columns.filter(_.startsWith("colF")).map(df(_)) : _*).show
This filter could be made more complex (same as Pandas). It is however a rather ugly solution (IMO):
df.select(df.columns.filter(x => (x.equals("colA") || x.startsWith("colF"))).map(df(_)) : _*).show
If the list of other columns is fixed you could also merge a fixed array of columns names with filtered array.
df.select((Array("colA", "colB") ++ df.columns.filter(_.startsWith("colF"))).map(df(_)) : _*).show
来源:https://stackoverflow.com/questions/35340390/how-to-select-all-columns-that-starts-with-a-common-label