How to use Featuretools to create features from multiple columns in single dataframe by column values?

百般思念 提交于 2020-01-01 07:02:14

问题


I'm trying to predict results of football matches based on earlier results. I'm running Python 3.6 on Windows and using Featuretools 0.4.1.

Let's say I have the following dataframe representing history of results.

Original DataFame

Using the dataframe above I want to create the following dataframe which will be fed to machine learning algorithm as X. Note that goal averages for home and away teams need to be calculated by team despite their past match venues. Is there a way to create such a dataframe using Featuretools?

Resulting Dataframe

Excel file used to simulate the transformation can be found here.


回答1:


This is a tricky feature, but a great usage of a custom primitive in Featuretools.

The first step is load the CSV of matches into a Featuretools entityset

es = ft.EntitySet()
matches_df = pd.read_csv("./matches.csv")
es.entity_from_dataframe(entity_id="matches",
                         index="match_id",
                         time_index="match_date",
                         dataframe=matches_df)

Then we define a custom transform primitive that calculates average goals scored in last n games. it has a parameter that controls the number of past games and whether or not to calculate for the home or away team. Information on defining custom primitives is in our documentation here and here.

from featuretools.variable_types import Numeric, Categorical
from featuretools.primitives import make_trans_primitive

def avg_goals_previous_n_games(home_team, away_team, home_goals, away_goals, which_team=None, n=1):
    # make dataframe so it's easier to work with
    df = pd.DataFrame({
        "home_team": home_team,
        "away_team": away_team,
        "home_goals": home_goals,
        "away_goals": away_goals
        })

    result = []
    for i, current_game in df.iterrows():
        # get the right team for this game
        team = current_game[which_team]

        # find all previous games that have been played
        prev_games =  df.iloc[:i]

        # only get games the team participated in
        participated = prev_games[(prev_games["home_team"] == team) | (prev_games["away_team"] == team)]
        if participated.shape[0] < n:
            result.append(None)
            continue

        # get last n games
        last_n = participated.tail(n)

        # calculate games per game
        goal_as_home = (last_n["home_team"] == team) * last_n["home_goals"]
        goal_as_away = (last_n["away_team"] == team) * last_n["away_goals"]

        # calculate mean across all home and away games
        mean = (goal_as_home + goal_as_away).mean()

        result.append(mean)

    return result

# custom function so the name of the feature prints out correctly
def make_name(self):
    return "%s_goal_last_%d" % (self.kwargs['which_team'], self.kwargs['n'])


AvgGoalPreviousNGames = make_trans_primitive(function=avg_goals_previous_n_games,
                                          input_types=[Categorical, Categorical, Numeric, Numeric],
                                          return_type=Numeric,
                                          cls_attributes={"generate_name": make_name, "uses_full_entity":True})

Now we can define features using this primitive. In this case, we will have to do it manually.

input_vars = [es["matches"]["home_team"], es["matches"]["away_team"], es["matches"]["home_goals"], es["matches"]["away_goals"]]
home_team_last1 = AvgGoalPreviousNGames(*input_vars, which_team="home_team", n=1)
home_team_last3 = AvgGoalPreviousNGames(*input_vars, which_team="home_team", n=3)
home_team_last5 = AvgGoalPreviousNGames(*input_vars, which_team="home_team", n=5)
away_team_last1 = AvgGoalPreviousNGames(*input_vars, which_team="away_team", n=1)
away_team_last3 = AvgGoalPreviousNGames(*input_vars, which_team="away_team", n=3)
away_team_last5 = AvgGoalPreviousNGames(*input_vars, which_team="away_team", n=5)

features = [home_team_last1, home_team_last3, home_team_last5,
            away_team_last1, away_team_last3, away_team_last5]

Finally, we can calculate the feature matrix

fm = ft.calculate_feature_matrix(entityset=es, features=features)

this returns

          home_team_goal_last_1  home_team_goal_last_3  home_team_goal_last_5  away_team_goal_last_1  away_team_goal_last_3  away_team_goal_last_5
match_id                                                                                                                                          
1                           NaN                    NaN                    NaN                    NaN                    NaN                    NaN
2                           2.0                    NaN                    NaN                    0.0                    NaN                    NaN
3                           1.0                    NaN                    NaN                    0.0                    NaN                    NaN
4                           3.0               1.000000                    NaN                    0.0               1.000000                    NaN
5                           1.0               1.333333                    NaN                    1.0               0.666667                    NaN
6                           2.0               2.000000                    1.2                    0.0               0.333333                    0.8
7                           1.0               0.666667                    0.6                    2.0               1.666667                    1.6
8                           2.0               1.000000                    0.8                    2.0               2.000000                    2.0
9                           0.0               1.000000                    0.8                    1.0               1.666667                    1.6
10                          3.0               2.000000                    2.0                    1.0               1.000000                    0.8
11                          3.0               2.333333                    2.2                    1.0               0.666667                    1.0
12                          2.0               2.666667                    2.2                    2.0               1.333333                    1.2

Finally, we can also use these manually defined features as an input to the automated feature engineering using Deep Feature Synthesis, which is explained here. By passing the manually defined features in as seed_features, ft.dfs will automatically stack on top of them.

fm, feature_defs = ft.dfs(entityset=es, 
                          target_entity="matches",
                          seed_features=features, 
                          agg_primitives=[], 
                          trans_primitives=["day", "month", "year", "weekday", "percentile"])

feature_defs is

[<Feature: home_team>,
 <Feature: away_team>,
 <Feature: home_goals>,
 <Feature: away_goals>,
 <Feature: label>,
 <Feature: home_team_goal_last_1>,
 <Feature: home_team_goal_last_3>,
 <Feature: home_team_goal_last_5>,
 <Feature: away_team_goal_last_1>,
 <Feature: away_team_goal_last_3>,
 <Feature: away_team_goal_last_5>,
 <Feature: DAY(match_date)>,
 <Feature: MONTH(match_date)>,
 <Feature: YEAR(match_date)>,
 <Feature: WEEKDAY(match_date)>,
 <Feature: PERCENTILE(home_goals)>,
 <Feature: PERCENTILE(away_goals)>,
 <Feature: PERCENTILE(home_team_goal_last_1)>,
 <Feature: PERCENTILE(home_team_goal_last_3)>,
 <Feature: PERCENTILE(home_team_goal_last_5)>,
 <Feature: PERCENTILE(away_team_goal_last_1)>,
 <Feature: PERCENTILE(away_team_goal_last_3)>,
 <Feature: PERCENTILE(away_team_goal_last_5)>]

The feature matrix is

         home_team away_team  home_goals  away_goals label  home_team_goal_last_1  home_team_goal_last_3  home_team_goal_last_5  away_team_goal_last_1  away_team_goal_last_3  away_team_goal_last_5  DAY(match_date)  MONTH(match_date)  YEAR(match_date)  WEEKDAY(match_date)  PERCENTILE(home_goals)  PERCENTILE(away_goals)  PERCENTILE(home_team_goal_last_1)  PERCENTILE(home_team_goal_last_3)  PERCENTILE(home_team_goal_last_5)  PERCENTILE(away_team_goal_last_1)  PERCENTILE(away_team_goal_last_3)  PERCENTILE(away_team_goal_last_5)
match_id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
1          Arsenal   Chelsea           2           0     1                    NaN                    NaN                    NaN                    NaN                    NaN                    NaN                1                  1              2014                    2                0.666667                0.166667                                NaN                                NaN                                NaN                                NaN                                NaN                                NaN
2          Arsenal   Chelsea           1           0     1                    2.0                    NaN                    NaN                    0.0                    NaN                    NaN                2                  1              2014                    3                0.333333                0.166667                           0.590909                                NaN                                NaN                           0.227273                                NaN                                NaN
3          Arsenal   Chelsea           0           3     2                    1.0                    NaN                    NaN                    0.0                    NaN                    NaN                3                  1              2014                    4                0.125000                0.958333                           0.272727                                NaN                                NaN                           0.227273                                NaN                                NaN
4          Chelsea   Arsenal           1           1     X                    3.0               1.000000                    NaN                    0.0               1.000000                    NaN                4                  1              2014                    5                0.333333                0.500000                           0.909091                           0.333333                                NaN                           0.227273                           0.500000                                NaN
5          Chelsea   Arsenal           2           0     1                    1.0               1.333333                    NaN                    1.0               0.666667                    NaN                5                  1              2014                    6                0.666667                0.166667                           0.272727                           0.555556                                NaN                           0.590909                           0.277778                                NaN
6          Chelsea   Arsenal           2           1     1                    2.0               2.000000                    1.2                    0.0               0.333333                    0.8                6                  1              2014                    0                0.666667                0.500000                           0.590909                           0.722222                           0.571429                           0.227273                           0.111111                           0.214286
7          Arsenal   Chelsea           2           2     X                    1.0               0.666667                    0.6                    2.0               1.666667                    1.6                7                  1              2014                    1                0.666667                0.791667                           0.272727                           0.111111                           0.142857                           0.909091                           0.833333                           0.785714
8          Arsenal   Chelsea           0           1     2                    2.0               1.000000                    0.8                    2.0               2.000000                    2.0                8                  1              2014                    2                0.125000                0.500000                           0.590909                           0.333333                           0.357143                           0.909091                           1.000000                           1.000000
9          Arsenal   Chelsea           1           3     2                    0.0               1.000000                    0.8                    1.0               1.666667                    1.6                9                  1              2014                    3                0.333333                0.958333                           0.090909                           0.333333                           0.357143                           0.590909                           0.833333                           0.785714
10         Chelsea   Arsenal           3           1     1                    3.0               2.000000                    2.0                    1.0               1.000000                    0.8               10                  1              2014                    4                0.916667                0.500000                           0.909091                           0.722222                           0.714286                           0.590909                           0.500000                           0.214286
11         Chelsea   Arsenal           2           2     X                    3.0               2.333333                    2.2                    1.0               0.666667                    1.0               11                  1              2014                    5                0.666667                0.791667                           0.909091                           0.888889                           0.928571                           0.590909                           0.277778                           0.428571
12         Chelsea   Arsenal           4           1     1                    2.0               2.666667                    2.2                    2.0               1.333333                    1.2               12                  1              2014                    6                1.000000                0.500000                           0.590909                           1.000000                           0.928571                           0.909091                           0.666667                           0.571429


来源:https://stackoverflow.com/questions/53579465/how-to-use-featuretools-to-create-features-from-multiple-columns-in-single-dataf

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!