I cannot figure out how to do "reverse melt" using Pandas in python. This is my starting data
import pandas as pd
from StringIO import StringIO
origin = pd.read_table(StringIO('''label type value
x a 1
x b 2
x c 3
y a 4
y b 5
y c 6
z a 7
z b 8
z c 9'''))
origin
Out[5]:
label type value
0 x a 1
1 x b 2
2 x c 3
3 y a 4
4 y b 5
5 y c 6
6 z a 7
7 z b 8
8 z c 9
This is the output I would like to have:
label a b c
x 1 2 3
y 4 5 6
z 7 8 9
I'm sure there is an easy way to do this, but I don't know how.
there are a few ways;
using .pivot
:
>>> origin.pivot(index='label', columns='type')['value']
type a b c
label
x 1 2 3
y 4 5 6
z 7 8 9
[3 rows x 3 columns]
using pivot_table
:
>>> origin.pivot_table(values='value', index='label', columns='type')
value
type a b c
label
x 1 2 3
y 4 5 6
z 7 8 9
[3 rows x 3 columns]
or .groupby
followed by .unstack
:
>>> origin.groupby(['label', 'type'])['value'].aggregate('mean').unstack()
type a b c
label
x 1 2 3
y 4 5 6
z 7 8 9
[3 rows x 3 columns]
来源:https://stackoverflow.com/questions/22127569/opposite-of-melt-in-python-pandas