问题
I'm using Matlab for camera calibration using Jean- Yves Bouget's Camera Calibration Toolbox. I have all the camera parameters from the calibration procedure. When I use a new image not in the calibration set, I can get its transformation equation e.g. Xc=R*X+T, where X is the 3D point of the calibration rig (planar) in the world frame, and Xc its coordinates in the camera frame. In other words, I have everything (both extrinsic and intrinsic parameters).
What I want to do is to perform perspective correction on this image i.e. I want it to remove any perspective and see the calibration rig undistorted (its a checkerboard).
Matlab's new Computer Vision toolbox has an object that performs a perspective transformation on an image, given a 3X3 matrix H. The problem is, I can't compute this matrix from the known intrinsic and extrinsic parameters!
回答1:
To all who are still interested in this after so many months, i've managed to get the correct homography matrix using Kovesi's code (http://www.csse.uwa.edu.au/~pk/research/matlabfns), and especially the homography2d.m function. You will need however the pixel values of the four corners of the rig. If the camera is steady fixed, then you will need to do this once. See example code below:
%get corner pixel coords from base image
p1=[33;150;1];
p2=[316;136;1];
p3=[274;22;1];
p4=[63;34;1];
por=[p1 p2 p3 p4];
por=[0 1 0;1 0 0;0 0 1]*por; %swap x-y <--------------------
%calculate target image coordinates in world frame
% rig is 9x7 (X,Y) with 27.5mm box edges
XXw=[[0;0;0] [0;27.5*9;0] [27.5*7;27.5*9;0] [27.5*7;0;0]];
Rtarget=[0 1 0;1 0 0;0 0 -1]; %Rotation matrix of target camera (vertical pose)
XXc=Rtarget*XXw+Tc_ext*ones(1,4); %go from world frame to camera frame
xn=XXc./[XXc(3,:);XXc(3,:);XXc(3,:)]; %calculate normalized coords
xpp=KK*xn; %calculate target pixel coords
% get homography matrix from original to target image
HH=homography2d(por,xpp);
%do perspective transformation to validate homography
pnew=HH*por./[HH(3,:)*por;HH(3,:)*por;HH(3,:)*por];
That should do the trick. Note that Matlab defines the x axis in an image ans the rows index and y as the columns. Thus one must swap x-y in the equations (as you'll probably see in the code above). Furthermore, i had managed to compute the homography matrix from the parameters solely, but the result was slightly off (maybe roundoff errors in the calibration toolbox). The best way to do this is the above.
If you want to use just the camera parameters (that is, don't use Kovesi's code), then the Homography matrix is H=KK*Rmat*inv_KK. In this case the code is,
% corner coords in pixels
p1=[33;150;1];
p2=[316;136;1];
p3=[274;22;1];
p4=[63;34;1];
pmat=[p1 p2 p3 p4];
pmat=[0 1 0;1 0 0;0 0 1]*pmat; %swap x-y
R=[0 1 0;1 0 0;0 0 1]; %rotation matrix of final camera pose
Rmat=Rc_ext'*R; %rotation from original pose to final pose
H=KK*Rmat*inv_KK; %homography matrix
pnew=H*pmat./[H(3,:)*pmat;H(3,:)*pmat;H(3,:)*pmat]; %do perspective transformation
H2=[0 1 0;-1 0 0;0 0 1]*H; %swap x-y in the homography matrix to apply in image
回答2:
Approach 1: In the Camera Calibration Toolbox you should notice that there is an H matrix for each image of your checkerboard in your workspace. I am not familiar with the computer vision toolbox yet but perhaps this is the matrix you need for your function. It seems that H is computed like so:
KK = [fc(1) fc(1)*alpha_c cc(1);0 fc(2) cc(2); 0 0 1];
H = KK * [R(:,1) R(:,2) Tc]; % where R is your extrinsic rotation matrix and Tc the translation matrix
H = H / H(3,3);
Approach 2: If the computer vision toolbox function doesn't work out for you then to find the prospective projection of an image I have used the interp2 function like so:
[X, Y] = meshgrid(0:size(I,2)-1, 0:size(I,1)-1);
im_coord = [X(:), Y(:), ones(prod(size(I_1)))]';
% Insert projection here for X and Y to XI and YI
ZI = interp2(X,Y,Z,XI,YI);
I have used prospective projections on a project a while ago and I believe that you need to use homogeneous coordinates. I think I found this wikipedia article quite helpful.
来源:https://stackoverflow.com/questions/5989790/how-to-do-perspective-correction-in-matlab-from-known-intrinsic-and-extrinsic-pa