How to improve the performance of this data pipeline for my tensorflow model

北慕城南 提交于 2019-12-31 11:01:30

问题


I have a tensorflow model which I am training on google-colab. The actual model is more complex, but I condensed it into a reproducible example (removed saving/restoring, learning rate decay, asserts, tensorboard events, gradient clipping and so on). The model works reasonably (converges to acceptable loss) and I am looking for a way to speed up the training (iterations per second).

Currently on colab's GPU it takes 10 minutes to train for 1000 iteration. With my current batch size of 512 it means that the model processes ~850 examples per second (I would prefer to have a batch size of 512 unless other sizes provide reasonable speedup. By itself changing batch size does not change the speed).


So currently I have a data stored in tfrecord format: here is a 500Mb example file, the total data-size is ~0.5Tb. This data passes through a reasonably heavy preprocessing step (I can't do preprocessing beforehand as it will increase the size of my tfrecords way above what I can afford). Preprocessing is done via tf.data and the output tensors ((batch_size, 8, 8, 24) which is treated as NHWC, (batch_size, 10)) are passed into a model. The example colab does not contain a simplified model which serves just as an example.


I tried a few approaches to speedup the training:

  • manual device placement (data pre-processing on cpu, propagations on gpu), but all my attempts resulted in worse speed (from 10% to 50% increase).
  • improve data preprocessing. I reviewed tf.data video and data tutorials. I tried almost every technique from that tutorial got no improvement (decrease in speed from 0% to 15%). In particular I tried:
    • dataset.prefetch(...)
    • passing num_parallel_calls to map
    • combining map and batch in tf.contrib.data.map_and_batch
    • using parallel_interleave

The code related to data preprocessing is here (here is a full reproducible example with example data):

_keys_to_map = {
    'd': tf.FixedLenFeature([], tf.string),  # data
    's': tf.FixedLenFeature([], tf.int64),   # score
}


def _parser(record):][3]
    parsed = tf.parse_single_example(record, _keys_to_map)
    return parsed['d'], parsed['s']


def init_tfrecord_dataset():
  files_train = glob.glob(DIR_TFRECORDS + '*.tfrecord')
  random.shuffle(files_train)

  with tf.name_scope('tfr_iterator'):
    ds = tf.data.TFRecordDataset(files_train)      # define data from randomly ordered files
    ds = ds.shuffle(buffer_size=10000)             # select elements randomly from the buffer
    ds = ds.map(_parser)                           # map them based on tfrecord format
    ds = ds.batch(BATCH_SIZE, drop_remainder=True) # group elements in batch (remove batch of less than BATCH_SIZE)
    ds = ds.repeat()                               # iterate infinitely 

    return ds.make_initializable_iterator()        # initialize the iterator


def iterator_to_data(iterator):
  """Creates a part of the graph which reads the raw data from an iterator and transforms it to a 
  data ready to be passed to model.

  Args:
    iterator      - iterator. Created by `init_tfrecord_dataset`

  Returns:
    data_board      - (BATCH_SIZE, 8, 8, 24) you can think about as NWHC for images.
    data_flags      - (BATCH_SIZE, 10)
    combined_score  - (BATCH_SIZE,)
  """

  b = tf.constant((128, 64, 32, 16, 8, 4, 2, 1), dtype=tf.uint8, name='unpacked_const')

  with tf.name_scope('tfr_parse'):
    with tf.name_scope('packed_data'):
      next_element = iterator.get_next()
      data_packed, score_int = next_element
      score = tf.cast(score_int, tf.float64, name='score_float')

    # https://stackoverflow.com/q/45454470/1090562
    with tf.name_scope('data_unpacked'):
      data_unpacked = tf.reshape(tf.mod(tf.to_int32(tf.decode_raw(data_packed, tf.uint8)[:,:,None] // b), 2), [BATCH_SIZE, 1552], name='data_unpack')

    with tf.name_scope('score'):
      with tf.name_scope('is_mate'):
        score_is_mate = tf.cast(tf.squeeze(tf.slice(data_unpacked, [0, 1546], [BATCH_SIZE, 1])), tf.float64, name='is_mate')
      with tf.name_scope('combined'):
        combined_score = (1 - score_is_mate) * VALUE_A * tf.tanh(score / VALUE_K) + score_is_mate * tf.sign(score) * (VALUE_A + (1 - VALUE_A) / (VALUE_B - 1) * tf.reduce_max(tf.stack([tf.zeros(BATCH_SIZE, dtype=tf.float64), VALUE_B - tf.abs(score)]), axis=0))


    with tf.name_scope('board'):
      with tf.name_scope('reshape_layers'):
        data_board = tf.reshape(tf.slice(data_unpacked, [0, 0], [BATCH_SIZE, 8 * 8 * 24]), [BATCH_SIZE, 8, 8, 24], name='board_reshape')

      with tf.name_scope('combine_layers'):  
        data_board = tf.cast(tf.stack([
          data_board[:,:,:, 0],
          data_board[:,:,:, 4],
          data_board[:,:,:, 8],
          data_board[:,:,:,12],
          data_board[:,:,:,16],
          data_board[:,:,:,20],
          - data_board[:,:,:, 1],
          - data_board[:,:,:, 5],
          - data_board[:,:,:, 9],
          - data_board[:,:,:,13],
          - data_board[:,:,:,17],
          - data_board[:,:,:,21],
          data_board[:,:,:, 2],
          data_board[:,:,:, 6],
          data_board[:,:,:,10],
          data_board[:,:,:,14],
          data_board[:,:,:,18],
          data_board[:,:,:,22],
          - data_board[:,:,:, 3],
          - data_board[:,:,:, 7],
          - data_board[:,:,:,11],
          - data_board[:,:,:,15],
          - data_board[:,:,:,19],
          - data_board[:,:,:,23],
        ], axis=3), tf.float64, name='board_compact')

    with tf.name_scope('flags'):
      data_flags = tf.cast(tf.slice(data_unpacked, [0, 1536], [BATCH_SIZE, 10]), tf.float64, name='flags')

  return data_board, data_flags, combined_score

I am looking for practical solutions (I have tried significant amount of theoretical ideas) which can improve the the speed of training (in terms of examples/second). I am not looking for a way to improve the accuracy of the model (or modify the model) as this is just a test model.

I have spent significant amount of time trying to optimize this (and gave up). So I would be happy to award a bounty of 200 for a working solution with a nice explanation.


回答1:


The suggestion from hampi to profile your training job is a good one, and may be necessary to understand the actual bottlenecks in your pipeline. The other suggestions in the Input Pipeline performance guide should be useful as well.

However, there is another possible "quick fix" that might be useful. In some cases, the amount of work in a Dataset.map() transformation can be very small, and dominated by the cost of invoking the function for each element. In those cases, we often try to vectorize the map function, and move it after the Dataset.batch() transformation, in order to invoke the function fewer times (1/512 as many times, in this case), and perform larger—and potentially easier-to-parallelize—operations on each batch. Fortunately, your pipeline can be vectorized as follows:

def _batch_parser(record_batch):
  # NOTE: Use `tf.parse_example()` to operate on batches of records.
  parsed = tf.parse_example(record_batch, _keys_to_map)
  return parsed['d'], parsed['s']

def init_tfrecord_dataset():
  files_train = glob.glob(DIR_TFRECORDS + '*.tfrecord')
  random.shuffle(files_train)

  with tf.name_scope('tfr_iterator'):
    ds = tf.data.TFRecordDataset(files_train)      # define data from randomly ordered files
    ds = ds.shuffle(buffer_size=10000)             # select elements randomly from the buffer
    # NOTE: Change begins here.
    ds = ds.batch(BATCH_SIZE, drop_remainder=True) # group elements in batch (remove batch of less than BATCH_SIZE)
    ds = ds.map(_batch_parser)                     # map batches based on tfrecord format
    # NOTE: Change ends here.
    ds = ds.repeat()                               # iterate infinitely 

    return ds.make_initializable_iterator()        # initialize the iterator

Currently, vectorization is a change that you have to make manually, but the tf.data team are working on an optimization pass that provides automatic vectorization.




回答2:


I have a couple of suggestions:

1) After creating the batch, the entire batch is processed by the iterator_to_data() function. This isn't really distributing the task on multiple threads, atleast not at the api level. Instead, you could try something like this in the init_tfrecord_dataset() function:

ds = tf.data.TFRecordDataset(files_train)      # define data from randomly ordered files
ds = ds.shuffle(buffer_size=10000)             # select elements randomly from the buffer
ds = ds.map(_parser)  
ds = ds.map(map_func=iterator_to_data, num_parallel_calls=FLAGS.num_preprocessing_threads)
ds = ds.batch(BATCH_SIZE, drop_remainder=True) # group elements in batch (remove batch of less than BATCH_SIZE)
ds = ds.repeat()

you might also want to change a few lines in the iterator_to_data() fucntion as the input argument is not a iterator with the above changes.

2) You might also want to get the profiling information using something like tf.train.ProfilerHook. This can tell you if the bottleneck is with the cpu or gpu. For example, if the bottleneck is with the CPU, you could see GPU ops waiting for memcpyHtoD op to complete.



来源:https://stackoverflow.com/questions/53424152/how-to-improve-the-performance-of-this-data-pipeline-for-my-tensorflow-model

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!