How do i visualize data points of tf-idf vectors for kmeans clustering?

只谈情不闲聊 提交于 2019-12-31 10:00:28

问题


I have a list of documents and the tf-idf score for each unique word in the entire corpus. How do I visualize that on a 2-d plot to give me a gauge of how many clusters I will need to run k-means?

Here is my code:

sentence_list=["Hi how are you", "Good morning" ...]
vectorizer=TfidfVectorizer(min_df=1, stop_words='english', decode_error='ignore')
vectorized=vectorizer.fit_transform(sentence_list)
num_samples, num_features=vectorized.shape
print "num_samples:  %d, num_features: %d" %(num_samples,num_features)
num_clusters=10

As you can see, I am able to transform my sentences into a tf-idf document matrix. But I am unsure how to plot the data points of the tf-idf score.

I was thinking:

  1. Add more variables like document length and something else
  2. do PCA to get an output of 2 dimensions

Thanks


回答1:


I am doing something similar at the moment, trying to plot in 2D, tf-idf scores for a dataset of texts. My approach, similar to suggestions in other comments, is to use PCA and t-SNE from scikit-learn.

import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

num_clusters = 10
num_seeds = 10
max_iterations = 300
labels_color_map = {
    0: '#20b2aa', 1: '#ff7373', 2: '#ffe4e1', 3: '#005073', 4: '#4d0404',
    5: '#ccc0ba', 6: '#4700f9', 7: '#f6f900', 8: '#00f91d', 9: '#da8c49'
}
pca_num_components = 2
tsne_num_components = 2

# texts_list = some array of strings for which TF-IDF is being computed

# calculate tf-idf of texts
tf_idf_vectorizer = TfidfVectorizer(analyzer="word", use_idf=True, smooth_idf=True, ngram_range=(2, 3))
tf_idf_matrix = tf_idf_vectorizer.fit_transform(texts_list)

# create k-means model with custom config
clustering_model = KMeans(
    n_clusters=num_clusters,
    max_iter=max_iterations,
    precompute_distances="auto",
    n_jobs=-1
)

labels = clustering_model.fit_predict(tf_idf_matrix)
# print labels

X = tf_idf_matrix.todense()

# ----------------------------------------------------------------------------------------------------------------------

reduced_data = PCA(n_components=pca_num_components).fit_transform(X)
# print reduced_data

fig, ax = plt.subplots()
for index, instance in enumerate(reduced_data):
    # print instance, index, labels[index]
    pca_comp_1, pca_comp_2 = reduced_data[index]
    color = labels_color_map[labels[index]]
    ax.scatter(pca_comp_1, pca_comp_2, c=color)
plt.show()



# t-SNE plot
embeddings = TSNE(n_components=tsne_num_components)
Y = embeddings.fit_transform(X)
plt.scatter(Y[:, 0], Y[:, 1], cmap=plt.cm.Spectral)
plt.show()



回答2:


PCA is one approach. For TF-IDF I have also used Scikit Learn's manifold package for non-linear dimension reduction. One thing that I find helpful is to label my points based on the TF-IDF scores.

Here's an example (need to insert your TF-IDF implementation at beginning):

from sklearn import manifold

# Insert your TF-IDF vectorizing here

##
# Do the dimension reduction
##
k = 10 # number of nearest neighbors to consider
d = 2 # dimensionality
pos = manifold.Isomap(k, d, eigen_solver='auto').fit_transform(.toarray())

##
# Get meaningful "cluster" labels
##
#Semantic labeling of cluster. Apply a label if the clusters max TF-IDF is in the 99% quantile of the whole corpus of TF-IDF scores
labels = vectorizer.get_feature_names() #text labels of features
clusterLabels = []
t99 = scipy.stats.mstats.mquantiles(X.data, [ 0.99])[0]
clusterLabels = []
for i in range(0,vectorized.shape[0]):
    row = vectorized.getrow(i)
    if row.max() >= t99:
        arrayIndex = numpy.where(row.data == row.max())[0][0]
        clusterLabels.append(labels[row.indices[arrayIndex]])
    else:
        clusterLabels.append('')
##
# Plot the dimension reduced data
##
pyplot.xlabel('reduced dimension-1')
pyplot.ylabel('reduced dimension-2')
for i in range(1, len(pos)):
    pyplot.scatter(pos[i][0], pos[i][1], c='cyan')
    pyplot.annotate(clusterLabels[i], pos[i], xytext=None, xycoords='data', textcoords='data', arrowprops=None)

pyplot.show()



回答3:


I suppose you were looking for t-SNE, by van der Maaten and Hinton.

The publication: http://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

This links to an IPython Notebook for doing this with sklearn.

In a nutshell, t-SNE is like PCA, but better at grouping objects related in a high-dimensional space on the 2-dim. space of a plot.




回答4:


According to your requirement you can plot your scipy.sparse.csr.csr_matrix

TfidfVectorizer.fit_transform() will give you (document id, term no) tf-idf score. now you can create a numpy matrix by term as your x-axis and document as your y-axis, 2nd option is to plot(temm , tf-tdf score) or you can plot 3-d with (term , document, frequency) here you can apply PCA also.

Just create a numpy matrix from scipy.sparse.csr.csr_matrix and use matplotlib.



来源:https://stackoverflow.com/questions/27494202/how-do-i-visualize-data-points-of-tf-idf-vectors-for-kmeans-clustering

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!