How does keras handle multiple losses?

馋奶兔 提交于 2019-12-31 08:45:08

问题


So my question is, if I have something like:

model = Model(inputs = input, outputs = [y1,y2])

l1 = 0.5
l2 = 0.3
model.compile(loss = [loss1,loss2], loss_weights = [l1,l2], ...)

What does keras do with the losses to obtain the final loss? Is it something like:

final_loss = l1*loss1 + l2*loss2

Also, what does it mean during training? Is the loss2 only used to update the weights on layers where y2 comes from? Or is it used for all the model's layers?

I'm pretty confused


回答1:


From model documentation:

loss: String (name of objective function) or objective function. See losses. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.

...

loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the weighted sum of all individual losses, weighted by the loss_weights coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients.

So, yes, the final loss will be the "weighted sum of all individual losses, weighted by the loss_weights coeffiecients".

You can check the code where the loss is calculated.

Also, what does it mean during training? Is the loss2 only used to update the weights on layers where y2 comes from? Or is it used for all the model's layers?

The weights are updated through backpropagation, so each loss will affect only layers that connect the input to the loss.

For example:

                        +----+         
                        > C  |-->loss1 
                       /+----+         
                      /                
                     /                 
    +----+    +----+/                  
 -->| A  |--->| B  |\                  
    +----+    +----+ \                 
                      \                
                       \+----+         
                        > D  |-->loss2 
                        +----+         
  • loss1 will affect A, B, and C.
  • loss2 will affect A, B, and D.



回答2:


For multiple outputs to back propagate, I think it is not a complete answer from what's mentioned by Fábio Perez.

Also, what does it mean during training? Is the loss2 only used to update the weights on layers where y2 comes from? Or is it used for all the model's layers?

For output C and output D, keras will compute a final loss F_loss=w1 * loss1 + w2 * loss2. And then, the final loss F_loss is applied to both output C and output D. Finally comes the backpropagation from output C and output D using the same F_loss to back propagate.



来源:https://stackoverflow.com/questions/49404309/how-does-keras-handle-multiple-losses

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!