Is there a built-in function to reverse bit order

扶醉桌前 提交于 2019-12-29 02:51:09

问题


I've come up with several manual ways of doing this, but i keep wondering if there is something built-in .NET that does this.

Basically, i want to reverse the bit order in a byte, so that the least significant bit becomes the most significant bit.

For example: 1001 1101 = 9D would become 1011 1001 = B9

On of the ways to do this is to use bitwise operations if following this pseudo code:

for (i = 0; i<8; i++)
{
  Y>>1
  x= byte & 1
  byte >>1
  y = x|y;
}

I wonder if there is a function somewhere that will allow me to do all this in one single line. Also, do you know the term for such an operation, i'm sure there is one, but i can't remember it at the moment.

Thanks


回答1:


I decided to do some performance tests about reversing methods.

Using Chad's link I wrote the following methods:

public static byte[] BitReverseTable =
{
    0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
    0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
    0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
    0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
    0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
    0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
    0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
    0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
    0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
    0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
    0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
    0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
    0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
    0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
    0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
    0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
    0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
    0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
    0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
    0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
    0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
    0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
    0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
    0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
    0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
    0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
    0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
    0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
    0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
    0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
    0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
    0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff
};
public static byte ReverseWithLookupTable(byte toReverse)
{
    return BitReverseTable[toReverse];
}
public static byte ReverseBitsWith4Operations(byte b)
{
    return (byte)(((b * 0x80200802ul) & 0x0884422110ul) * 0x0101010101ul >> 32);
}
public static byte ReverseBitsWith3Operations(byte b)
{
    return (byte)((b * 0x0202020202ul & 0x010884422010ul) % 1023);
}
public static byte ReverseBitsWith7Operations(byte b)
{
    return (byte)(((b * 0x0802u & 0x22110u) | (b * 0x8020u & 0x88440u)) * 0x10101u >> 16);
}
public static byte ReverseBitsWithLoop(byte v)
{
    byte r = v; // r will be reversed bits of v; first get LSB of v
    int s = 7; // extra shift needed at end
    for (v >>= 1; v != 0; v >>= 1)
    {
        r <<= 1;
        r |= (byte)(v & 1);
        s--;
    }
    r <<= s; // shift when v's highest bits are zero
    return r;
}
public static byte ReverseWithUnrolledLoop(byte b)
{
    byte r = b;
    b >>= 1;
    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    r <<= 1;
    r |= (byte)(b & 1);
    b >>= 1;

    return r;
}

Then I tested it, and here's the results:

Test features:

  • 100000000 random bytes to reverse
  • OS: Windows 7 x64
  • CPU: AMD Phenom II 955 (4-core @ 3.2 GHz)
  • RAM: 4GB
  • IDE: Visual Studio 2010

Target framework 3.5

-----------------------------------------------------
|    Method     | Ticks(x64 mode) | Ticks(x86 mode) |
-----------------------------------------------------
| Loop          |   4861859       |   4079554       |
| Unrolled Loop |   3241781       |   2948026       |
| Look-up table |   894809        |   312410        |
| 3-Operations  |   2068072       |   6757008       |
| 4-Operations  |   893924        |   1972576       |
| 7-Operations  |   1219189       |   303499        |
-----------------------------------------------------

Target framework 4

-----------------------------------------------------
|    Method     | Ticks(x64 mode) | Ticks(x86 mode) |
-----------------------------------------------------
| Loop          |   4682654       |   4147036       |
| Unrolled Loop |   3154920       |   2851307       |
| Look-up table |   602686        |   313940        |
| 3-Operations  |   2067509       |   6661542       |
| 4-Operations  |   893406        |   2018334       |
| 7-Operations  |   1193200       |   991792        |
-----------------------------------------------------

So, look-up table method is not always the fastest :)

That can be reasonable, because memory access is slower than CPU registers access, so if some method is compiled and optimized enough to avoid mem access (and to do few operations) it is faster. (Anyway, the gap is extremely reduced by CPU mem caching)

It's also interesting to see the different behaviours in case of x64 or x86 mode, and how 3.5 and 4.0 frameworks performs distinct optimizations.




回答2:


No, there isn't anything in the BCL for this.

But, assuming you want something fast:

  • Since there are only 8 bits, it pays to unroll the loop (use 4 statements instead of the for-loop).

  • For an even faster solution, create a 256 entry lookup table.

And you can of course wrap both methods in a function so that the usage only takes 1 statement.

I found a page for this problem.




回答3:


You can find bit twiddling algorithms in the fxtbook. Chapter 1.14 gives these bit swapping algorithms:

    static uint bitSwap1(uint x) {
        uint m = 0x55555555;
        return ((x & m) << 1) | ((x & (~m)) >> 1);
    }
    static uint bitSwap2(uint x) {
        uint m = 0x33333333;
        return ((x & m) << 2) | ((x & (~m)) >> 2);
    }
    static uint bitSwap4(uint x) {
        uint m = 0x0f0f0f0f;
        return ((x & m) << 4) | ((x & (~m)) >> 4);
    }

Which makes your byte value bit reversal:

    public static byte swapBits(byte value) {
        return (byte)(bitSwap4(bitSwap2(bitSwap1(value))));
    }

The x86 JIT compiler doesn't do a great job optimizing this code. If speed matters then you could use it to initialize a byte[] to make it a fast lookup instead.




回答4:


Using @Chads link

byte b; 
b = 0x9D;
b = (byte)((b * 0x0202020202 & 0x010884422010) % 1023); 

Edit: Forgot the cast




回答5:


Please see this comprehensive bit-twiddling hacks, namely you want 'Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division)'

int lVal = 0x9D;
int lNewVal = (int)((((ulong)lVal * 0x0202020202UL) & 0x010884422010UL) % 1023);
System.Diagnostics.Debug.WriteLine(string.Format("{0:X2}", lNewVal));

When you run this you will find that the value gets reversed to 0xB9.




回答6:


private UInt32 BitReverse(UInt32 value)
{
  UInt32 left = (UInt32)1 << 31;
  UInt32 right = 1;
  UInt32 result = 0;

  for (int i = 31; i >= 1; i -= 2)
  {
    result |= (value & left) >> i;
    result |= (value & right) << i;
    left >>= 1;
    right <<= 1;
  }
  return result;
}



回答7:


public static byte Reverse(this byte b)
{
    int a = 0;
    for (int i = 0; i < 8; i++)
        if ((b & (1 << i)) != 0)
            a |= 1 << (7- i);
    return (byte)a;
}


来源:https://stackoverflow.com/questions/3587826/is-there-a-built-in-function-to-reverse-bit-order

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!