问题
Example:
I have an array:
array([[1, 2, 0, 3, 4],
[0, 4, 2, 1, 3],
[4, 3, 2, 0, 1],
[4, 2, 3, 0, 1],
[1, 0, 2, 3, 4],
[4, 3, 2, 0, 1]], dtype=int64)
I have a set (variable length, order doesn't matter) of "bad" values:
{2, 3}
I want to return the mask that hides these values:
array([[False, True, False, True, False],
[False, False, True, False, True],
[False, True, True, False, False],
[False, True, True, False, False],
[False, False, True, True, False],
[False, True, True, False, False]], dtype=bool)
What's the simplest way to do this in NumPy?
回答1:
Use np.in1d that gives us a flattened mask of such matching occurrences and then reshape back to input array shape for the desired output, like so -
np.in1d(a,[2,3]).reshape(a.shape)
Note that we need to feed in the numbers to be searched as a list or an array.
Sample run -
In [5]: a
Out[5]:
array([[1, 2, 0, 3, 4],
[0, 4, 2, 1, 3],
[4, 3, 2, 0, 1],
[4, 2, 3, 0, 1],
[1, 0, 2, 3, 4],
[4, 3, 2, 0, 1]])
In [6]: np.in1d(a,[2,3]).reshape(a.shape)
Out[6]:
array([[False, True, False, True, False],
[False, False, True, False, True],
[False, True, True, False, False],
[False, True, True, False, False],
[False, False, True, True, False],
[False, True, True, False, False]], dtype=bool)
2018 Edition : numpy.isin
Use NumPy built-in np.isin (introduced in 1.13.0) that keeps the shape and hence doesn't require us to reshape afterwards -
In [153]: np.isin(a,[2,3])
Out[153]:
array([[False, True, False, True, False],
[False, False, True, False, True],
[False, True, True, False, False],
[False, True, True, False, False],
[False, False, True, True, False],
[False, True, True, False, False]])
回答2:
In [965]: np.any([x==i for i in (2,3)],axis=0)
Out[965]:
array([[False, True, False, True, False],
[False, False, True, False, True],
[False, True, True, False, False],
[False, True, True, False, False],
[False, False, True, True, False],
[False, True, True, False, False]], dtype=bool)
This does iterate, but if the (2,3)
set is small (relative to the size of x
) this is relatively fast. In fact for small arr2
, np.in1d
does this:
mask = np.zeros(len(ar1), dtype=np.bool)
for a in ar2:
mask |= (ar1 == a)
Making a masked array from this:
In [970]: np.ma.MaskedArray(x,mask)
Out[970]:
masked_array(data =
[[1 -- 0 -- 4]
[0 4 -- 1 --]
[4 -- -- 0 1]
[4 -- -- 0 1]
[1 0 -- -- 4]
[4 -- -- 0 1]],
mask =
[[False True False True False]
[False False True False True]
[False True True False False]
[False True True False False]
[False False True True False]
[False True True False False]],
fill_value = 999999)
回答3:
There might be simpler ways than this. But this can be one way:
import numpy as np
a = np.array([[1, 2, 0, 3, 4],
[0, 4, 2, 1, 3],
[4, 3, 2, 0, 1],
[4, 2, 3, 0, 1],
[1, 0, 2, 3, 4],
[4, 3, 2, 0, 1]], dtype=np.int64)
f = np.vectorize(lambda x: x in {2,3})
print f(a)
Output:
[[False True False True False]
[False False True False True]
[False True True False False]
[False True True False False]
[False False True True False]
[False True True False False]]
来源:https://stackoverflow.com/questions/41318942/mask-out-specific-values-from-an-array