How do I fit a sine curve to my data with pylab and numpy?

為{幸葍}努か 提交于 2019-12-27 19:13:51

问题


For a school project I am trying to show that economies follow a relatively sinusoidal growth pattern. Beyond the economics of it, which are admittedly dodgy, I am building a python simulation to show that even when we let some degree of randomness take hold, we can still produce something relatively sinusoidal. I am happy with my data that I'm producing but now Id like to find some way to get a sine graph that pretty closely matches the data. I know you can do polynomial fit, but can you do sine fit?

Thanks for your help in advance. Let me know if there's any parts of the code you want to see.


回答1:


You can use the least-square optimization function in scipy to fit any arbitrary function to another. In case of fitting a sin function, the 3 parameters to fit are the offset ('a'), amplitude ('b') and the phase ('c').

As long as you provide a reasonable first guess of the parameters, the optimization should converge well.Fortunately for a sine function, first estimates of 2 of these are easy: the offset can be estimated by taking the mean of the data and the amplitude via the RMS (3*standard deviation/sqrt(2)).

Note: as a later edit, frequency fitting has also been added. This does not work very well (can lead to extremely poor fits). Thus, use at your discretion, my advise would be to not use frequency fitting unless frequency error is smaller than a few percent.

This leads to the following code:

import numpy as np
from scipy.optimize import leastsq
import pylab as plt

N = 1000 # number of data points
t = np.linspace(0, 4*np.pi, N)
f = 1.15247 # Optional!! Advised not to use
data = 3.0*np.sin(f*t+0.001) + 0.5 + np.random.randn(N) # create artificial data with noise

guess_mean = np.mean(data)
guess_std = 3*np.std(data)/(2**0.5)/(2**0.5)
guess_phase = 0
guess_freq = 1
guess_amp = 1

# we'll use this to plot our first estimate. This might already be good enough for you
data_first_guess = guess_std*np.sin(t+guess_phase) + guess_mean

# Define the function to optimize, in this case, we want to minimize the difference
# between the actual data and our "guessed" parameters
optimize_func = lambda x: x[0]*np.sin(x[1]*t+x[2]) + x[3] - data
est_amp, est_freq, est_phase, est_mean = leastsq(optimize_func, [guess_amp, guess_freq, guess_phase, guess_mean])[0]

# recreate the fitted curve using the optimized parameters
data_fit = est_amp*np.sin(est_freq*t+est_phase) + est_mean

# recreate the fitted curve using the optimized parameters

fine_t = np.arange(0,max(t),0.1)
data_fit=est_amp*np.sin(est_freq*fine_t+est_phase)+est_mean

plt.plot(t, data, '.')
plt.plot(t, data_first_guess, label='first guess')
plt.plot(fine_t, data_fit, label='after fitting')
plt.legend()
plt.show()

Edit: I assumed that you know the number of periods in the sine-wave. If you don't, it's somewhat trickier to fit. You can try and guess the number of periods by manual plotting and try and optimize it as your 6th parameter.




回答2:


Here is a parameter-free fitting function fit_sin() that does not require manual guess of frequency:

import numpy, scipy.optimize

def fit_sin(tt, yy):
    '''Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc"'''
    tt = numpy.array(tt)
    yy = numpy.array(yy)
    ff = numpy.fft.fftfreq(len(tt), (tt[1]-tt[0]))   # assume uniform spacing
    Fyy = abs(numpy.fft.fft(yy))
    guess_freq = abs(ff[numpy.argmax(Fyy[1:])+1])   # excluding the zero frequency "peak", which is related to offset
    guess_amp = numpy.std(yy) * 2.**0.5
    guess_offset = numpy.mean(yy)
    guess = numpy.array([guess_amp, 2.*numpy.pi*guess_freq, 0., guess_offset])

    def sinfunc(t, A, w, p, c):  return A * numpy.sin(w*t + p) + c
    popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess)
    A, w, p, c = popt
    f = w/(2.*numpy.pi)
    fitfunc = lambda t: A * numpy.sin(w*t + p) + c
    return {"amp": A, "omega": w, "phase": p, "offset": c, "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": numpy.max(pcov), "rawres": (guess,popt,pcov)}

The initial frequency guess is given by the peak frequency in the frequency domain using FFT. The fitting result is almost perfect assuming there is only one dominant frequency (other than the zero frequency peak).

import pylab as plt

N, amp, omega, phase, offset, noise = 500, 1., 2., .5, 4., 3
#N, amp, omega, phase, offset, noise = 50, 1., .4, .5, 4., .2
#N, amp, omega, phase, offset, noise = 200, 1., 20, .5, 4., 1
tt = numpy.linspace(0, 10, N)
tt2 = numpy.linspace(0, 10, 10*N)
yy = amp*numpy.sin(omega*tt + phase) + offset
yynoise = yy + noise*(numpy.random.random(len(tt))-0.5)

res = fit_sin(tt, yynoise)
print( "Amplitude=%(amp)s, Angular freq.=%(omega)s, phase=%(phase)s, offset=%(offset)s, Max. Cov.=%(maxcov)s" % res )

plt.plot(tt, yy, "-k", label="y", linewidth=2)
plt.plot(tt, yynoise, "ok", label="y with noise")
plt.plot(tt2, res["fitfunc"](tt2), "r-", label="y fit curve", linewidth=2)
plt.legend(loc="best")
plt.show()

The result is good even with high noise:

Amplitude=1.00660540618, Angular freq.=2.03370472482, phase=0.360276844224, offset=3.95747467506, Max. Cov.=0.0122923578658




回答3:


More userfriendly to us is the function curvefit. Here an example:

import numpy as np
from scipy.optimize import curve_fit
import pylab as plt

N = 1000 # number of data points
t = np.linspace(0, 4*np.pi, N)
data = 3.0*np.sin(t+0.001) + 0.5 + np.random.randn(N) # create artificial data with noise

guess_freq = 1
guess_amplitude = 3*np.std(data)/(2**0.5)
guess_phase = 0
guess_offset = np.mean(data)

p0=[guess_freq, guess_amplitude,
    guess_phase, guess_offset]

# create the function we want to fit
def my_sin(x, freq, amplitude, phase, offset):
    return np.sin(x * freq + phase) * amplitude + offset

# now do the fit
fit = curve_fit(my_sin, t, data, p0=p0)

# we'll use this to plot our first estimate. This might already be good enough for you
data_first_guess = my_sin(t, *p0)

# recreate the fitted curve using the optimized parameters
data_fit = my_sin(t, *fit[0])

plt.plot(data, '.')
plt.plot(data_fit, label='after fitting')
plt.plot(data_first_guess, label='first guess')
plt.legend()
plt.show()



回答4:


The current methods to fit a sin curve to a given data set require a first guess of the parameters, followed by an interative process. This is a non-linear regression problem.

A different method consists in transforming the non-linear regression to a linear regression thanks to a convenient integral equation. Then, there is no need for initial guess and no need for iterative process : the fitting is directly obtained.

In case of the function y = a + r*sin(w*x+phi) or y=a+b*sin(w*x)+c*cos(w*x), see pages 35-36 of the paper "Régression sinusoidale" published on Scribd

In case of the function y = a + p*x + r*sin(w*x+phi) : pages 49-51 of the chapter "Mixed linear and sinusoidal regressions".

In case of more complicated functions, the general process is explained in the chapter "Generalized sinusoidal regression" pages 54-61, followed by a numerical example y = r*sin(w*x+phi)+(b/x)+c*ln(x), pages 62-63




回答5:


The following Python script performs least squares fitting of sinusoids as described in Bloomfield (2000), "Fourier Analysis of Time Series", Wiley. The key steps are the following:

  1. Define a range of different possible frequencies.
  2. For each of the frequencies specified at point 1 above, estimate all the parameters of the sinusoid (mean, amplitude and phase) by ordinary least squares (OLS).
  3. Among all the different sets of parameters estimated at point 2 above, select the one that minimizes the residual sum of squares (RSS).
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
######################################################################################
# (1) generate the data
######################################################################################
omega=4.5  # frequency
theta0=0.5 # mean
theta1=1.5 # amplitude
phi=-0.25  # phase

n=1000 # number of observations
sigma=1.25 # error standard deviation
e=np.random.normal(0,sigma,n) # Gaussian error

t=np.linspace(1,n,n)/n # time index
y=theta0+theta1*np.cos(2*np.pi*(omega*t+phi))+e # time series
######################################################################################
# (2) estimate the parameters
######################################################################################
# define the range of different possible frequencies
f=np.linspace(1,12,100)

# create a data frame to store the estimated parameters and the associated
# residual sum of squares for each of the considered frequencies
coefs=pd.DataFrame(data=np.zeros((len(f),5)), columns=["omega","theta0","theta1","phi","RSS"])

for i in range(len(f)): # iterate across the different considered frequencies

    x1=np.cos(2*np.pi*f[i]*t) # define the first regressor
    x2=np.sin(2*np.pi*f[i]*t) # define the second regressor

    X=sm.add_constant(np.transpose(np.vstack((x1,x2)))) # add the intercept
    reg=sm.OLS(y,X).fit() # fit the regression by OLS

    A=reg.params[1] # estimated coefficient of first regressor
    B=reg.params[2] # estimated coefficient of second regressor

    # estimated mean
    mean=reg.params[0]

    # estimated amplitude
    amplitude=np.sqrt(A**2+B**2)

    # estimated phase
    if A>0:          phase=np.arctan(-B/A)/(2*np.pi)
    if A<0 and B>0:  phase=(np.arctan(-B/A)-np.pi)/(2*np.pi)
    if A<0 and B<=0: phase=(np.arctan(-B/A)+np.pi)/(2*np.pi)
    if A==0 and B>0: phase=-1/4
    if A==0 and B<0: phase=1/4

    # fitted sinusoid
    s=mean+amplitude*np.cos(2*np.pi*(f[i]*t+phase))

    # residual sum of squares
    RSS=np.sum((y-s)**2)

    # save the estimation results
    coefs["omega"][i]=f[i]
    coefs["theta0"][i]=mean
    coefs["theta1"][i]=amplitude
    coefs["phi"][i]=phase
    coefs["RSS"][i]=RSS

    del x1, x2, X, reg, A, B, mean, amplitude, phase, s, RSS
######################################################################################
# (3) analyze the results
######################################################################################
# extract the set of parameters that minimizes the residual sum of squares
coefs=coefs.loc[coefs["RSS"]==coefs["RSS"].min(),]

# calculate the fitted sinusoid
s=coefs["theta0"].values+coefs["theta1"].values*np.cos(2*np.pi*(coefs["omega"].values*t+coefs["phi"].values))

# plot the fitted sinusoid
plt.plot(y,color="black",linewidth=1,label="actual")
plt.plot(s,color="lightgreen",linewidth=3,label="fitted")
plt.ylim(ymax=np.max(y)*1.3)
plt.legend(loc=1)
plt.show()


来源:https://stackoverflow.com/questions/16716302/how-do-i-fit-a-sine-curve-to-my-data-with-pylab-and-numpy

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!