主机:Gentoo Linux 11.2 with linux kernel 3.0.6
硬件平台:FL2440(S3C2440)with linux kernel 2.6.35
原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/7205713
1、mtd_notifier结构体
//MTD设备通知结构体 struct mtd_notifier { void (*add)(struct mtd_info *mtd);//加入MTD原始/字符/块设备时执行 void (*remove)(struct mtd_info *mtd);//移除MTD原始/字符/块设备时执行 struct list_head list;//list是双向链表,定义在include/linux/list.h };而struct list_head定义在/include/linux/list.h中,内核中其宏定义和函数如下
INIT_LIST_HEAD(ptr) 初始化ptr节点为表头,将前趋与后继都指向自己。
LIST_HEAD(name) 声明并初始化双向循环链表name。
static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)
向链表中在prev与next之间插入元素new
static inline void list_add(struct list_head *new, struct list_head *head)
在链表中头节点后插入元素new,调用__list_add()实现。
static inline void list_add_tail(struct list_head *new, struct list_head *head)
在链表末尾插入元素new,调用__list_add()实现。
static inline void __list_del(struct list_head * prev, struct list_head * next)
删除链表中prev与next之间的元素。
static inline void list_del(struct list_head *entry)
删除链表中的元素entry。
static inline void list_del_init(struct list_head *entry)
从链表中删除元素entry,并将其初始化为新的链表。
static inline void list_move(struct list_head *list, struct list_head *head)
从链表中删除list元素,并将其加入head链表。
static inline void list_move_tail(struct list_head *list, struct list_head *head)
把list移动到链表末尾。
static inline int list_empty(const struct list_head *head)
测试链表是否为空。
static inline void __list_splice(struct list_head *list, struct list_head *head)
将链表list与head合并。
static inline void list_splice(struct list_head *list, struct list_head *head)
在list不为空的情况下,调用__list_splice()实现list与head的合并。
static inline void list_splice_init(struct list_head *list, struct list_head *head)
将两链表合并,并将list初始化。
list_entry(ptr, type, member)
list_entry的定义是怎么回事?
a. list_entry的定义在内核源文件include/linux/list.h中:
#define list_entry(ptr, type, member)
((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
b. 其功能是根据list_head型指针ptr换算成其宿主结构的起始地址,该宿主结构是type型的,而ptr在其宿主结构中定义为member成员。
2、add_mtd_device函数
/** * add_mtd_device - register an MTD device * @mtd: pointer to new MTD device info structure * * Add a device to the list of MTD devices present in the system, and * notify each currently active MTD 'user' of its arrival. Returns * zero on success or 1 on failure, which currently will only happen * if there is insufficient memory or a sysfs error. */ //添加MTD设备函数,将MTD设备加入MTD设备链表,并通知所有的MTD user该MTD设备。返回0表示成功,返回1表示出错(内存不足或文件系统错误) int add_mtd_device(struct mtd_info *mtd) { struct mtd_notifier *not;//定义一个MTD设备通知器 int i, error; //下面是设置mtd_info结构体信息 if (!mtd->backing_dev_info) { switch (mtd->type) { case MTD_RAM://MTD_RAM定义在include/mtd/mtd-abi.h mtd->backing_dev_info = &mtd_bdi_rw_mappable; break; case MTD_ROM: mtd->backing_dev_info = &mtd_bdi_ro_mappable; break; default: mtd->backing_dev_info = &mtd_bdi_unmappable; break; } } BUG_ON(mtd->writesize == 0); mutex_lock(&mtd_table_mutex);//给操作mtd_table加锁 do { if (!idr_pre_get(&mtd_idr, GFP_KERNEL))//为mtd_idr分配内存 goto fail_locked; error = idr_get_new(&mtd_idr, mtd, &i);//将id号和mtd_idr关联 } while (error == -EAGAIN); if (error) goto fail_locked; mtd->index = i; mtd->usecount = 0; if (is_power_of_2(mtd->erasesize)) mtd->erasesize_shift = ffs(mtd->erasesize) - 1; else mtd->erasesize_shift = 0; if (is_power_of_2(mtd->writesize)) mtd->writesize_shift = ffs(mtd->writesize) - 1; else mtd->writesize_shift = 0; mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; /* Some chips always power up locked. Unlock them now */ if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) { if (mtd->unlock(mtd, 0, mtd->size)) printk(KERN_WARNING "%s: unlock failed, writes may not work\n", mtd->name); } /* Caller should have set dev.parent to match the * physical device. */ mtd->dev.type = &mtd_devtype; mtd->dev.class = &mtd_class; mtd->dev.devt = MTD_DEVT(i); //设置mtd设备名 dev_set_name(&mtd->dev, "mtd%d", i); //设置mtd设备信息mtd_info dev_set_drvdata(&mtd->dev, mtd); //注册设备 if (device_register(&mtd->dev) != 0) goto fail_added; //创建设备 if (MTD_DEVT(i)) device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, "mtd%dro", i); DEBUG(0, "mtd: Giving out device %d to %s\n", i, mtd->name); /* No need to get a refcount on the module containing the notifier, since we hold the mtd_table_mutex */ //遍历list链表将每个mtd_notifier执行add()函数,对新加入的mtd设备操作,通知所有的MTD user新的MTD设备的到来 list_for_each_entry(not, &mtd_notifiers, list) not->add(mtd); //解锁信号量 mutex_unlock(&mtd_table_mutex); /* We _know_ we aren't being removed, because our caller is still holding us here. So none of this try_ nonsense, and no bitching about it either. :) */ __module_get(THIS_MODULE); return 0; fail_added: idr_remove(&mtd_idr, i); fail_locked: mutex_unlock(&mtd_table_mutex); return 1; }
其中用到的IDR机制如下:
(1)获得idr
要在代码中使用idr,首先要包括<linux/idr.h>。接下来,我们要在代码中分配idr结构体,并初始化:
void idr_init(struct idr *idp);
其中idr定义如下:
struct idr {
struct idr_layer *top;
struct idr_layer *id_free;
int layers;
int id_free_cnt;
spinlock_t lock;
};
/* idr是idr机制的核心结构体 */
(2)为idr分配内存
int idr_pre_get(struct idr *idp, unsigned int gfp_mask);
每次通过idr获得ID号之前,需要先分配内存。
返回0表示错误,非零值代表正常
(3)分配ID号并将ID号和指针关联
int idr_get_new(struct idr *idp, void *ptr, int *id);
int idr_get_new_above(struct idr *idp, void *ptr, int start_id, int *id);
idp: 之前通过idr_init初始化的idr指针
id: 由内核自动分配的ID号
ptr: 和ID号相关联的指针
start_id: 起始ID号。内核在分配ID号时,会从start_id开始。如果为I2C节点分配ID号,可以将设备地址作为start_id
函数调用正常返回0,如果没有ID可以分配,则返回-ENOSPC
在实际中,上述函数常常采用如下方式使用:
again:
if (idr_pre_get(&my_idr, GFP_KERNEL) == 0) {
/* No memory, give up entirely */
}
spin_lock(&my_lock);
result = idr_get_new(&my_idr, &target, &id);
if (result == -EAGAIN) {
sigh();
spin_unlock(&my_lock);
goto again;
}
(4)通过ID号搜索对应的指针
void *idr_find(struct idr *idp, int id);
返回值是和给定id相关联的指针,如果没有,则返回NULL
(5)删除ID
要删除一个ID,使用:
void idr_remove(struct idr *idp, int id);
通过上面这些方法,内核代码可以为子设备,inode生成对应的ID号。这些函数都定义在lib/idr.c中
/** * del_mtd_device - unregister an MTD device * @mtd: pointer to MTD device info structure * * Remove a device from the list of MTD devices present in the system, * and notify each currently active MTD 'user' of its departure. * Returns zero on success or 1 on failure, which currently will happen * if the requested device does not appear to be present in the list. */ //删除mtd设备函数。 //从MTD设备的链表中移除该MTD设备信息,并通知系统中所有的MTD user该MTD设备的移除。 //返回0表示成功,返回1表示出错(该设备信息不存在设备链表中) int del_mtd_device (struct mtd_info *mtd) { int ret; struct mtd_notifier *not;//定义一个mtd_notifier指针 mutex_lock(&mtd_table_mutex); if (idr_find(&mtd_idr, mtd->index) != mtd) { ret = -ENODEV; goto out_error; } /* No need to get a refcount on the module containing the notifier, since we hold the mtd_table_mutex */ //遍历list链表,并使每个mtd_notifier执行remove函数,通知每个MTD user该设备的移除 list_for_each_entry(not, &mtd_notifiers, list) not->remove(mtd); if (mtd->usecount) { printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", mtd->index, mtd->name, mtd->usecount); ret = -EBUSY; } else { device_unregister(&mtd->dev);//移除MTD设备 idr_remove(&mtd_idr, mtd->index);//移除mtd的id号并释放已分配的内存 module_put(THIS_MODULE); ret = 0; } out_error: mutex_unlock(&mtd_table_mutex); return ret; }
4、register_mtd_user函数
/** * register_mtd_user - register a 'user' of MTD devices. * @new: pointer to notifier info structure * * Registers a pair of callbacks function to be called upon addition * or removal of MTD devices. Causes the 'add' callback to be immediately * invoked for each MTD device currently present in the system. */ //MTD原始设备使用者注册MTD设备(具体的字符设备或块设备) //参数是新的mtd通知器,将其加入mtd_notifiers队列,然后 void register_mtd_user (struct mtd_notifier *new) { struct mtd_info *mtd; mutex_lock(&mtd_table_mutex); //将new->list头插mtd_notifiers入链表 list_add(&new->list, &mtd_notifiers); __module_get(THIS_MODULE); //对每个MTD原始设备执行add函数 mtd_for_each_device(mtd) new->add(mtd); mutex_unlock(&mtd_table_mutex); }
5、unregister_mtd_user函数
/** * unregister_mtd_user - unregister a 'user' of MTD devices. * @old: pointer to notifier info structure * * Removes a callback function pair from the list of 'users' to be * notified upon addition or removal of MTD devices. Causes the * 'remove' callback to be immediately invoked for each MTD device * currently present in the system. */ //删除MTD设备。 //通知所有该MTD原始设备的MTD设备执行remove()函数,将被删除的MTD设备的通知器从mtd_notifier队列中删除 int unregister_mtd_user (struct mtd_notifier *old) { struct mtd_info *mtd; mutex_lock(&mtd_table_mutex); module_put(THIS_MODULE); //通知所有该MTD原始设备的MTD设备执行remove()函数 mtd_for_each_device(mtd) old->remove(mtd); //将被删除的MTD设备的通知器从mtd_notifier队列中删除 list_del(&old->list); mutex_unlock(&mtd_table_mutex); return 0; }
6、获取MTD设备的操作指针,只是参数不同,一个是按照设备地址,另一个是安装设备的名称来获取MTD设备的操作地址
struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
struct mtd_info *get_mtd_device_nm(const char *name)
下面现分析第一个函数
/** * get_mtd_device - obtain a validated handle for an MTD device * @mtd: last known address of the required MTD device * @num: internal device number of the required MTD device * * Given a number and NULL address, return the num'th entry in the device * table, if any. Given an address and num == -1, search the device table * for a device with that address and return if it's still present. Given * both, return the num'th driver only if its address matches. Return * error code if not. */ //根据设备地址来获取MTD设备的操作地址 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) { struct mtd_info *ret = NULL, *other; int err = -ENODEV; //给mtd_table加锁,以便互斥访问 mutex_lock(&mtd_table_mutex); if (num == -1) {//num=-1&&链表不空,则返回mtd的地址 mtd_for_each_device(other) { if (other == mtd) { ret = mtd; break; } } } else if (num >= 0) {//num>=0,查找第num个设备,若不空,返回地址,若为空,返回NULL ret = idr_find(&mtd_idr, num); if (mtd && mtd != ret) ret = NULL; } if (!ret) { ret = ERR_PTR(err); goto out; } err = __get_mtd_device(ret); //错误处理 if (err) ret = ERR_PTR(err); out: mutex_unlock(&mtd_table_mutex);//解锁互斥信号量 return ret; } int __get_mtd_device(struct mtd_info *mtd) { int err; if (!try_module_get(mtd->owner)) return -ENODEV; if (mtd->get_device) { err = mtd->get_device(mtd); if (err) { module_put(mtd->owner); return err; } } mtd->usecount++;//增加该MTD原始设备的使用者计数器 return 0; }
第二个函数
/** * get_mtd_device_nm - obtain a validated handle for an MTD device by * device name * @name: MTD device name to open * * This function returns MTD device description structure in case of * success and an error code in case of failure. */ //通过设备名来获得相应的MTD原始设备的操作地址 //该函数和上面的函数类似,不过就是通过循环比较MTD设备的name字段来返回 struct mtd_info *get_mtd_device_nm(const char *name) { int err = -ENODEV; struct mtd_info *mtd = NULL, *other; mutex_lock(&mtd_table_mutex); mtd_for_each_device(other) { if (!strcmp(name, other->name)) { mtd = other; break; } } if (!mtd) goto out_unlock; if (!try_module_get(mtd->owner)) goto out_unlock; if (mtd->get_device) { err = mtd->get_device(mtd); if (err) goto out_put; } mtd->usecount++; mutex_unlock(&mtd_table_mutex); return mtd; out_put: module_put(mtd->owner); out_unlock: mutex_unlock(&mtd_table_mutex); return ERR_PTR(err); }
下篇分析MTD原始设备的分区实现方法ARM-Linux驱动--MTD驱动分析(三)
来源:https://www.cnblogs.com/ming-yan/archive/2012/01/16/3126139.html