crypt函数的linux实现,可以用于windows调用

余生颓废 提交于 2019-12-26 19:49:14

【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>>

参考源码

glibc-1.09-crypt.tar.gz

#include<string.h>

/*
 * UFC-crypt: ultra fast crypt(3) implementation
 *
 * Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * @(#)ufc-crypt.h	1.19 7/29/93
 *
 * Definitions of datatypes 
 * 
 */

/* 
 * Requirements for datatypes:
 * 
 * A datatype 'ufc_long' of at least 32 bit
 * *and*
 *   A type 'long32' of exactly 32 bits (_UFC_32_)
 *   *or*
 *   A type 'long64' of exactly 64 bits (_UFC_64_)
 *
 * 'int' is assumed to be at least 8 bit
 */

/*
 * #ifdef's for various architectures
 */

#ifdef cray
/* thanks to <hutton@opus.sdsc.edu> (Tom Hutton)  for testing */
typedef unsigned long ufc_long;
typedef unsigned long long64;
#define _UFC_64_
#endif

#if defined(convex) || defined(__convexc__)
/* thanks to pcl@convex.oxford.ac.uk (Paul Leyland) for testing */
typedef unsigned long ufc_long;
typedef long long     long64;
#define _UFC_64_
#endif

#ifdef ksr
/* 
 * Note - the KSR machine does not define a unique symbol
 * which we can check. So you MUST add '-Dksr' to your Makefile.
 * Thanks to lijewski@theory.tc.cornell.edu (Mike Lijewski) for
 * the patch.
 */
typedef unsigned long ufc_long;
typedef unsigned long long64;
#define _UFC_64_
#endif

/*
 * Thanks to <iglesias@draco.acs.uci.edu> (Mike Iglesias)
 */

#ifdef __alpha
typedef unsigned long ufc_long;
typedef unsigned long long64;
#define _UFC_64_
#endif

/*
 * For debugging 64 bit code etc with 'gcc'
 */

#ifdef GCC3232
typedef unsigned long ufc_long;
typedef unsigned long long32;
#define _UFC_32_
#endif

#ifdef GCC3264
typedef unsigned long ufc_long;
typedef long long     long64;
#define _UFC_64_
#endif

#ifdef GCC6432
typedef long long ufc_long;
typedef unsigned long long32;
#define _UFC_32_
#endif

#ifdef GCC6464
typedef long long     ufc_long;
typedef long long     long64;
#define _UFC_64_
#endif

/*
 * Catch all for 99.95% of all UNIX machines
 */

#ifndef _UFC_64_
#ifndef _UFC_32_
#define _UFC_32_
typedef unsigned long ufc_long;
typedef unsigned long long32;
#endif
#endif


/*
 * UFC-crypt: ultra fast crypt(3) implementation
 *
 * Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * @(#)patchlevel.h	1.12 05/18/93
 *
 */

#define PATCHLEVEL "UFC-crypt, patchlevel 1e, @(#)patchlevel.h	1.12 05/18/93"



/*
 * UFC-crypt: ultra fast crypt(3) implementation
 *
 * Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 * 
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * @(#)crypt.c	2.20 05/18/93
 *
 * Semiportable C version
 *
 */

#ifdef _UFC_32_

/*
 * 32 bit version
 */
 
extern long32 _ufc_keytab[16][2];
extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];


#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))

static ufc_long ary[4];

ufc_long *_ufc_doit(ufc_long l1,ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
{ 
	int i;
	long32 s, *k;
	register long32 *sb0 = _ufc_sb0;
	register long32 *sb1 = _ufc_sb1;
	register long32 *sb2 = _ufc_sb2;
	register long32 *sb3 = _ufc_sb3;

	while(itr--) 
		{
		k = &_ufc_keytab[0][0];
		for(i=8; i--; ) 
		{
			s = *k++ ^ r1;
			l1 ^= SBA(sb1, s & 0xffff); l2 ^= SBA(sb1, (s & 0xffff)+4);  
			l1 ^= SBA(sb0, s >>= 16);   l2 ^= SBA(sb0, (s)         +4); 
			s = *k++ ^ r2; 
			l1 ^= SBA(sb3, s & 0xffff); l2 ^= SBA(sb3, (s & 0xffff)+4);
			l1 ^= SBA(sb2, s >>= 16);   l2 ^= SBA(sb2, (s)         +4);

			s = *k++ ^ l1; 
			r1 ^= SBA(sb1, s & 0xffff); r2 ^= SBA(sb1, (s & 0xffff)+4);  
			r1 ^= SBA(sb0, s >>= 16);   r2 ^= SBA(sb0, (s)         +4); 
			s = *k++ ^ l2; 
			r1 ^= SBA(sb3, s & 0xffff); r2 ^= SBA(sb3, (s & 0xffff)+4);  
			r1 ^= SBA(sb2, s >>= 16);   r2 ^= SBA(sb2, (s)         +4);
		} 
		s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
	}
	ary[0] = l1; ary[1] = l2; ary[2] = r1; ary[3] = r2;
	return ary;
}

#endif

#ifdef _UFC_64_

/*
* 64 bit version
*/

extern long64 _ufc_keytab[16];
extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];


#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))

static ufc_long ary[4];

ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
{
	int i;
	long64 l, r, s, *k;
	register long64 *sb0 = _ufc_sb0;
	register long64 *sb1 = _ufc_sb1;
	register long64 *sb2 = _ufc_sb2;
	register long64 *sb3 = _ufc_sb3;

	l = (((long64)l1) << 32) | ((long64)l2);
	r = (((long64)r1) << 32) | ((long64)r2);

	while(itr--) 
	{
		k = &_ufc_keytab[0];
		for(i=8; i--; ) 
		{
			s = *k++ ^ r;
			l ^= SBA(sb3, (s >>  0) & 0xffff);
			l ^= SBA(sb2, (s >> 16) & 0xffff);
			l ^= SBA(sb1, (s >> 32) & 0xffff);
			l ^= SBA(sb0, (s >> 48) & 0xffff);

			s = *k++ ^ l;
			r ^= SBA(sb3, (s >>  0) & 0xffff);
			r ^= SBA(sb2, (s >> 16) & 0xffff);
			r ^= SBA(sb1, (s >> 32) & 0xffff);
			r ^= SBA(sb0, (s >> 48) & 0xffff);
		} 
		s=l; l=r; r=s;
	}

	ary[0] = l >> 32; ary[1] = l & 0xffffffff;
	ary[2] = r >> 32; ary[3] = r & 0xffffffff;
	return ary;
}

#endif


#ifdef DEBUG
#include <stdio.h>
#endif

#ifndef STATIC
#define STATIC static
#endif


static char patchlevel_str[] = PATCHLEVEL;

/* 
 * Permutation done once on the 56 bit 
 *  key derived from the original 8 byte ASCII key.
 */
static int pc1[56] = { 
  57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
  10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
  63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
  14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
};

/*
 * How much to rotate each 28 bit half of the pc1 permutated
 *  56 bit key before using pc2 to give the i' key
 */
static int rots[16] = { 
  1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 
};

/* 
 * Permutation giving the key 
 * of the i' DES round 
 */
static int pc2[48] = { 
  14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
  23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
  41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};

/*
 * The E expansion table which selects
 * bits from the 32 bit intermediate result.
 */
static int esel[48] = { 
  32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,
   8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
  16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
  24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1
};
static int e_inverse[64];

/* 
 * Permutation done on the 
 * result of sbox lookups 
 */
static int perm32[32] = {
  16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
  2,   8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
};

/* 
 * The sboxes
 */
static int sbox[8][4][16]= {
        { { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 },
          {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 },
          {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 },
          { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 }
        },

        { { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 },
          {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 },
          {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 },
          { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 }
        },

        { { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 },
          { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 },
          { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 },
          {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 }
        },

        { {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 },
          { 13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 },
          { 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 },
          {  3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 }
        },

        { {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 },
          { 14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 },
          {  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14 },
          { 11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 }
        },

        { { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 },
          { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 },
          {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 },
          {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 }
        },

        { {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 },
          { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 },
          {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 },
          {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 }
        },

        { { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 },
          {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 },
          {  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 },
          {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
        }
};

/* 
 * This is the initial 
 * permutation matrix
 */
static int initial_perm[64] = { 
  58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12, 4,
  62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16, 8,
  57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11, 3,
  61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15, 7
};

/* 
 * This is the final 
 * permutation matrix
 */
static int final_perm[64] = {
  40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31,
  38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29,
  36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27,
  34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25
};

/* 
 * The 16 DES keys in BITMASK format 
 */
#ifdef _UFC_32_
long32 _ufc_keytab[16][2];
#endif
#ifdef _UFC_64_
long64 _ufc_keytab[16];
#endif

#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')

/* Macro to set a bit (0..23) */
#define BITMASK(i) ( (1L<<(11L-(i)%12L+3L)) << ((i)<12L?16L:0L) )

/*
 * sb arrays:
 *
 * Workhorses of the inner loop of the DES implementation.
 * They do sbox lookup, shifting of this  value, 32 bit
 * permutation and E permutation for the next round.
 *
 * Kept in 'BITMASK' format.
 */

#ifdef _UFC_32_
long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; 
#endif

#ifdef _UFC_64_
long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; 
#endif

/* 
 * eperm32tab: do 32 bit permutation and E selection
 *
 * The first index is the byte number in the 32 bit value to be permuted
 *  -  second  -   is the value of this byte
 *  -  third   -   selects the two 32 bit values
 *
 * The table is used and generated internally in init_des to speed it up
 */
static ufc_long eperm32tab[4][256][2];

/* 
 * do_pc1: permform pc1 permutation in the key schedule generation.
 *
 * The first   index is the byte number in the 8 byte ASCII key
 *  -  second    -      -    the two 28 bits halfs of the result
 *  -  third     -   selects the 7 bits actually used of each byte
 *
 * The result is kept with 28 bit per 32 bit with the 4 most significant
 * bits zero.
 */
static ufc_long do_pc1[8][2][128];

/*
 * do_pc2: permform pc2 permutation in the key schedule generation.
 *
 * The first   index is the septet number in the two 28 bit intermediate values
 *  -  second    -    -  -  septet values
 *
 * Knowledge of the structure of the pc2 permutation is used.
 *
 * The result is kept with 28 bit per 32 bit with the 4 most significant
 * bits zero.
 */
static ufc_long do_pc2[8][128];

/*
 * efp: undo an extra e selection and do final
 *      permutation giving the DES result.
 * 
 *      Invoked 6 bit a time on two 48 bit values
 *      giving two 32 bit longs.
 */
static ufc_long efp[16][64][2];

static unsigned char bytemask[8]  = {
  0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};

static ufc_long longmask[32] = {
  0x80000000, 0x40000000, 0x20000000, 0x10000000,
  0x08000000, 0x04000000, 0x02000000, 0x01000000,
  0x00800000, 0x00400000, 0x00200000, 0x00100000,
  0x00080000, 0x00040000, 0x00020000, 0x00010000,
  0x00008000, 0x00004000, 0x00002000, 0x00001000,
  0x00000800, 0x00000400, 0x00000200, 0x00000100,
  0x00000080, 0x00000040, 0x00000020, 0x00000010,
  0x00000008, 0x00000004, 0x00000002, 0x00000001
};

#ifdef DEBUG

void pr_bits(ufc_long *a, int n)
{ 
	ufc_long i, j, t, tmp;
    n /= 8;
    for(i = 0; i < n; i++) 
	{
		tmp=0;
		for(j = 0; j < 8; j++) 
		{
			t=8*i+j;
			tmp|=(a[t/24] & BITMASK(t % 24))?bytemask[j]:0;
		}
		(void)printf("%02x ",tmp);
    }
    printf(" ");
 }

static void set_bits(ufc_long v, ufc_long *b)
{ 
	ufc_long i;
    *b = 0;
    for(i = 0; i < 24; i++) 
	{
		if(v & longmask[8 + i])
		{
			*b |= BITMASK(i);
		}
    }
}

#endif

/*
 * Silly rewrite of 'bzero'. I do so
 * because some machines don't have
 * bzero and some don't have memset.
 */

STATIC void clearmem(char *start, int cnt)
{
	while(cnt--)
	{
		*start++ = '\0';
	}
}

static int initialized = 0;

/* lookup a 6 bit value in sbox */

#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];

/*
 * Initialize unit - may be invoked directly
 * by fcrypt users.
 */

void init_des()
{ 
	int comes_from_bit;
    int bit, sg;
    ufc_long j;
    ufc_long mask1, mask2;

    /*
     * Create the do_pc1 table used
     * to affect pc1 permutation
     * when generating keys
     */
    for(bit = 0; bit < 56; bit++) 
	{
		comes_from_bit  = pc1[bit] - 1;
		mask1 = bytemask[comes_from_bit % 8 + 1];
		mask2 = longmask[bit % 28 + 4];
		for(j = 0; j < 128; j++) 
		{
			if(j & mask1)
			{
				do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
			}
		}
    }

    /*
     * Create the do_pc2 table used
     * to affect pc2 permutation when
     * generating keys
     */
    for(bit = 0; bit < 48; bit++) 
	{
		comes_from_bit  = pc2[bit] - 1;
		mask1 = bytemask[comes_from_bit % 7 + 1];
		mask2 = BITMASK(bit % 24);
		for(j = 0; j < 128; j++) 
		{
			if(j & mask1)
			{
				do_pc2[comes_from_bit / 7][j] |= mask2;
			}
		}
    }

    /* 
     * Now generate the table used to do combined
     * 32 bit permutation and e expansion
     *
     * We use it because we have to permute 16384 32 bit
     * longs into 48 bit in order to initialize sb.
     *
     * Looping 48 rounds per permutation becomes 
     * just too slow...
     *
     */

    clearmem((char*)eperm32tab, sizeof(eperm32tab));

    for(bit = 0; bit < 48; bit++) 
	{
		ufc_long mask1,comes_from;

		comes_from = perm32[esel[bit]-1]-1;
		mask1      = bytemask[comes_from % 8];

		for(j = 256; j--;) 
		{
			if(j & mask1)
			{
				eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
			}
		}
    }
    
    /* 
     * Create the sb tables:
     *
     * For each 12 bit segment of an 48 bit intermediate
     * result, the sb table precomputes the two 4 bit
     * values of the sbox lookups done with the two 6
     * bit halves, shifts them to their proper place,
     * sends them through perm32 and finally E expands
     * them so that they are ready for the next
     * DES round.
     *
     */
    for(sg = 0; sg < 4; sg++) 
	{
		int j1, j2;
		int s1, s2;
    
		for(j1 = 0; j1 < 64; j1++) 
		{
			s1 = s_lookup(2 * sg, j1);
			for(j2 = 0; j2 < 64; j2++) 
			{
				ufc_long to_permute, inx;

				s2         = s_lookup(2 * sg + 1, j2);
				to_permute = (((ufc_long)s1 << 4)  | 
				(ufc_long)s2) << (24 - 8 * (ufc_long)sg);

				#ifdef _UFC_32_
					inx = ((j1 << 6)  | j2) << 1;
					sb[sg][inx  ]  = eperm32tab[0][(to_permute >> 24) & 0xff][0];
					sb[sg][inx+1]  = eperm32tab[0][(to_permute >> 24) & 0xff][1];
					sb[sg][inx  ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
					sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
					sb[sg][inx  ] |= eperm32tab[2][(to_permute >>  8) & 0xff][0];
					sb[sg][inx+1] |= eperm32tab[2][(to_permute >>  8) & 0xff][1];
					sb[sg][inx  ] |= eperm32tab[3][(to_permute)       & 0xff][0];
					sb[sg][inx+1] |= eperm32tab[3][(to_permute)       & 0xff][1];
				#endif
				#ifdef _UFC_64_
					inx = ((j1 << 6)  | j2);
					sb[sg][inx]  = 
					((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
					(long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
					sb[sg][inx] |=
					((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
					(long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
					sb[sg][inx] |= 
					((long64)eperm32tab[2][(to_permute >>  8) & 0xff][0] << 32) |
					(long64)eperm32tab[2][(to_permute >>  8) & 0xff][1];
					sb[sg][inx] |=
					((long64)eperm32tab[3][(to_permute)       & 0xff][0] << 32) |
					(long64)eperm32tab[3][(to_permute)       & 0xff][1];
				#endif
			}
		}
	}  

	/* 
	* Create an inverse matrix for esel telling
	* where to plug out bits if undoing it
	*/
	for(bit=48; bit--;) 
	{
		e_inverse[esel[bit] - 1     ] = bit;
		e_inverse[esel[bit] - 1 + 32] = bit + 48;
	}

	/* 
	* create efp: the matrix used to
	* undo the E expansion and effect final permutation
	*/
	clearmem((char*)efp, sizeof efp);
	for(bit = 0; bit < 64; bit++) 
	{
		int o_bit, o_long;
		ufc_long word_value, mask1, mask2;
		int comes_from_f_bit, comes_from_e_bit;
		int comes_from_word, bit_within_word;

		/* See where bit i belongs in the two 32 bit long's */
		o_long = bit / 32; /* 0..1  */
		o_bit  = bit % 32; /* 0..31 */

		/* 
		* And find a bit in the e permutated value setting this bit.
		*
		* Note: the e selection may have selected the same bit several
		* times. By the initialization of e_inverse, we only look
		* for one specific instance.
		*/
		comes_from_f_bit = final_perm[bit] - 1;         /* 0..63 */
		comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
		comes_from_word  = comes_from_e_bit / 6;        /* 0..15 */
		bit_within_word  = comes_from_e_bit % 6;        /* 0..5  */

		mask1 = longmask[bit_within_word + 26];
		mask2 = longmask[o_bit];

		for(word_value = 64; word_value--;) 
		{
			if(word_value & mask1)
			{
				efp[comes_from_word][word_value][o_long] |= mask2;
			}
		}
	}
	initialized++;
}

/* 
 * Process the elements of the sb table permuting the
 * bits swapped in the expansion by the current salt.
 */

#ifdef _UFC_32_
STATIC void shuffle_sb(long32 *k, ufc_long saltbits)
{ 
	ufc_long j;
	long32 x;
	for(j=4096; j--;) 
	{
		x = (k[0] ^ k[1]) & (long32)saltbits;
		*k++ ^= x;
		*k++ ^= x;
	}
}
#endif

#ifdef _UFC_64_
STATIC void shuffle_sb(long64 *k, ufc_long saltbits)
{ 
	ufc_long j;
	long64 x;
	for(j=4096; j--;) 
	{
		x = ((*k >> 32) ^ *k) & (long64)saltbits;
		*k++ ^= (x << 32) | x;
	}
}
#endif

/* 
* Setup the unit for a new salt
* Hopefully we'll not see a new salt in each crypt call.
*/

static unsigned char current_salt[3] = "&&"; /* invalid value */
static ufc_long current_saltbits = 0;
static int direction = 0;

STATIC void setup_salt(const char *s)
{ 
	ufc_long i, j, saltbits;

	if(!initialized)
	{
		init_des();
	}
	if(s[0] == current_salt[0] && s[1] == current_salt[1])
	{
		return;
	}
	current_salt[0] = s[0]; current_salt[1] = s[1];

	/* 
	* This is the only crypt change to DES:
	* entries are swapped in the expansion table
	* according to the bits set in the salt.
	*/
	saltbits = 0;
	for(i = 0; i < 2; i++) 
	{
		long c=ascii_to_bin(s[i]);
		#ifdef notdef
		/* 
		* Some applications do rely on illegal
		* salts. It seems that UFC-crypt behaves
		* identically to standard crypt 
		* implementations on illegal salts -- glad
		*/
		if(c < 0 || c > 63)
		{
			c = 0;
		}
		#endif
		for(j = 0; j < 6; j++) 
		{
			if((c >> j) & 0x1)
			{
				saltbits |= BITMASK(6 * i + j);
			}
		}
	}

	/*
	* Permute the sb table values
	* to reflect the changed e
	* selection table
	*/
	shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); 
	shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
	shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
	shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);

	current_saltbits = saltbits;
}

STATIC void ufc_mk_keytab(char *key)
{
	ufc_long v1, v2, *k1;
	int i;
	#ifdef _UFC_32_
	long32 v, *k2 = &_ufc_keytab[0][0];
	#endif
	#ifdef _UFC_64_
	long64 v, *k2 = &_ufc_keytab[0];
	#endif

	v1 = v2 = 0; k1 = &do_pc1[0][0][0];
	for(i = 8; i--;) 
	{
		v1 |= k1[*key   & 0x7f]; k1 += 128;
		v2 |= k1[*key++ & 0x7f]; k1 += 128;
	}

	for(i = 0; i < 16; i++) 
	{
		k1 = &do_pc2[0][0];

		v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
		v  = k1[(v1 >> 21) & 0x7f]; k1 += 128;
		v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
		v |= k1[(v1 >>  7) & 0x7f]; k1 += 128;
		v |= k1[(v1      ) & 0x7f]; k1 += 128;

		#ifdef _UFC_32_
		*k2++ = v;
		v = 0;
		#endif
		#ifdef _UFC_64_
		v <<= 32;
		#endif

		v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
		v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
		v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
		v |= k1[(v2 >>  7) & 0x7f]; k1 += 128;
		v |= k1[(v2      ) & 0x7f];

		*k2++ = v;
	}
	direction = 0;
}

/* 
* Undo an extra E selection and do final permutations
*/

ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
{
	ufc_long v1, v2, x;
	static ufc_long ary[2];

	x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
	x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;

	v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;

	v1 |= efp[15][ r2         & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
	v1 |= efp[14][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
	v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
	v1 |= efp[12][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];

	v1 |= efp[11][ r1         & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
	v1 |= efp[10][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
	v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
	v1 |= efp[ 8][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];

	v1 |= efp[ 7][ l2         & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
	v1 |= efp[ 6][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
	v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
	v1 |= efp[ 4][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];

	v1 |= efp[ 3][ l1         & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
	v1 |= efp[ 2][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
	v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
	v1 |= efp[ 0][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];

	ary[0] = v1; ary[1] = v2;
	return ary;
}

/* 
* crypt only: convert from 64 bit to 11 bit ASCII 
* prefixing with the salt
*/

STATIC char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
{
	static char outbuf[14];
	int i, s, shf;

	outbuf[0] = salt[0];
	outbuf[1] = salt[1] ? salt[1] : salt[0];

	for(i = 0; i < 5; i++) 
	{
		shf = (26 - 6 * i); /* to cope with MSC compiler bug */
		outbuf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
	}

	s  = (v2 & 0xf) << 2;
	v2 = (v2 >> 2) | ((v1 & 0x3) << 30);

	for(i = 5; i < 10; i++) 
	{
		shf = (56 - 6 * i);
		outbuf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
	}

	outbuf[12] = bin_to_ascii(s);
	outbuf[13] = 0;

	return outbuf;
}

/* 
* UNIX crypt function
*/

char *crypt(const char *key,const char * salt)
{ 
	ufc_long *s;
	char ktab[9];

	/*
	* Hack DES tables according to salt
	*/
	setup_salt(salt);

	/*
	* Setup key schedule
	*/
	clearmem(ktab, sizeof ktab);
	(void)strncpy(ktab, key, 8);
	ufc_mk_keytab(ktab);

	/*
	* Go for the 25 DES encryptions
	*/
	s = _ufc_doit((ufc_long)0, (ufc_long)0, 
	(ufc_long)0, (ufc_long)0, (ufc_long)25);
	/*
	* Do final permutations
	*/
	s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]);

	/*
	* And convert back to 6 bit ASCII
	*/
	return output_conversion(s[0], s[1], salt);
}

/* 
* To make fcrypt users happy.
* They don't need to call init_des.
*/

char *fcrypt(char *key, char *salt)
{
	return crypt(key, salt);
}

/* 
* UNIX encrypt function. Takes a bitvector
* represented by one byte per bit and
* encrypt/decrypt according to edflag
*/

void encrypt(char *block, int edflag)
{
	ufc_long l1, l2, r1, r2, *s;
	int i;

	/*
	* Undo any salt changes to E expansion
	*/
	setup_salt("..");

	/*
	* Reverse key table if
	* changing operation (encrypt/decrypt)
	*/
	if((edflag == 0) != (direction == 0)) 
	{
		for(i = 0; i < 8; i++) 
		{
			#ifdef _UFC_32_
			long32 x;
			x = _ufc_keytab[15-i][0]; 
			_ufc_keytab[15-i][0] = _ufc_keytab[i][0]; 
			_ufc_keytab[i][0] = x;

			x = _ufc_keytab[15-i][1]; 
			_ufc_keytab[15-i][1] = _ufc_keytab[i][1]; 
			_ufc_keytab[i][1] = x;
			#endif
			#ifdef _UFC_64_
			long64 x;
			x = _ufc_keytab[15-i];
			_ufc_keytab[15-i] = _ufc_keytab[i];
			_ufc_keytab[i] = x;
			#endif
		}
		direction = edflag;
	}

	/*
	* Do initial permutation + E expansion
	*/
	i = 0;
	for(l1 = 0; i < 24; i++) 
	{
		if(block[initial_perm[esel[i]-1]-1])
		{	
			l1 |= BITMASK(i);
		}
	}
	for(l2 = 0; i < 48; i++) 
	{
		if(block[initial_perm[esel[i]-1]-1])
		{
			l2 |= BITMASK(i-24);
		}
	}

	i = 0;
	for(r1 = 0; i < 24; i++) 
	{
		if(block[initial_perm[esel[i]-1+32]-1])
		{
			r1 |= BITMASK(i);
		}
	}
	for(r2 = 0; i < 48; i++) 
	{
		if(block[initial_perm[esel[i]-1+32]-1])
		{
			r2 |= BITMASK(i-24);
		}
	}

	/*
	* Do DES inner loops + final conversion
	*/
	s = _ufc_doit(l1, l2, r1, r2, (ufc_long)1);
	/*
	* Do final permutations
	*/
	s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]);

	/*
	* And convert to bit array
	*/
	l1 = s[0]; r1 = s[1];
	for(i = 0; i < 32; i++) 
	{
		*block++ = (l1 & longmask[i]) != 0;
	}
	for(i = 0; i < 32; i++) 
	{
		*block++ = (r1 & longmask[i]) != 0;
	}

}

/* 
* UNIX setkey function. Take a 64 bit DES
* key and setup the machinery.
*/

void setkey(char *key)
{ 
	int i,j;
	unsigned char c;
	unsigned char ktab[8];

	setup_salt(".."); /* be sure we're initialized */

	for(i = 0; i < 8; i++) 
	{
		for(j = 0, c = 0; j < 8; j++)
		{
			c = c << 1 | *key++;
		}
		ktab[i] = c >> 1;
	}

	ufc_mk_keytab((char*)ktab);
}

/* 
* Ultrix crypt16 function, thanks to pcl@convex.oxford.ac.uk (Paul Leyland)
*/

char *crypt16(char *key, char *salt)
{
	ufc_long *s, *t;
	char ktab[9], ttab[9];
	static char q[14], res[25];
	/*
	* Hack DES tables according to salt
	*/
	setup_salt(salt);

	/*
	* Setup key schedule
	*/
	clearmem(ktab, sizeof ktab);
	(void)strncpy(ktab, key, 8);
	ufc_mk_keytab(ktab);

	/*
	* Go for first 20 DES encryptions
	*/
	s = _ufc_doit((ufc_long)0, (ufc_long)0, 
	(ufc_long)0, (ufc_long)0, (ufc_long)20);
	s = _ufc_dofinalperm(s[0], s[1], s[2], s[3]);

	/*
	* And convert back to 6 bit ASCII
	*/
	strcpy (res, output_conversion(s[0], s[1], salt));

	clearmem(ttab, sizeof ttab);
	if (strlen (key) > 8) 
	{
		(void)strncpy(ttab, key+8, 8);
	}
	ufc_mk_keytab(ttab);

	/*
	* Go for second 5 DES encryptions
	*/
	t = _ufc_doit((ufc_long)0, (ufc_long)0, 
	(ufc_long)0, (ufc_long)0, (ufc_long)5);
	t = _ufc_dofinalperm(t[0], t[1], t[2], t[3]);

	/*
	* And convert back to 6 bit ASCII
	*/
	strcpy (q, output_conversion(t[0], t[1], salt));
	strcpy (res+13, q+2);

	return res;
}
#ifdef DEBUG
int main()
{
	printf("%s\n",crypt("cleartext2222","sa"));
}
#endif

编译执行g++ source.cpp -DDEBUG

如果要抽象为函数,可以添加一个source.h,内容如下

char *crypt(const char *key,const char * salt);
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!