在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突。这就是著名的并发性问题。
典型的冲突有:
l 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失。例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新。
l 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取。例如:用户A,B看到的值都是6,用户B把值改为2,用户A读到的值仍为6。
并发控制机制
最常用的处理多用户并发访问的方法是加锁。当一个用户锁住数据库中的某个对象时,其他用户就不能再访问该对象。加锁对并发访问的影响体现在锁的粒度上。比如,放在一个表上的锁限制对整个表的并发访问;放在数据页上的锁限制了对整个数据页的访问;放在行上的锁只限制对该行的并发访问。可见行锁粒度最小,并发访问最好,页锁粒度最大,表锁介于2者之间。
悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。[1] 悲观锁假定其他用户企图访问或者改变你正在访问、更改的对象的概率是很高的,因此在悲观锁的环境中,在你开始改变此对象之前就将该对象锁住,并且直到你提交了所作的更改之后才释放锁。悲观的缺陷是不论是页锁还是行锁,加锁的时间可能会很长,这样可能会长时间的限制其他用户的访问,也就是说悲观锁的并发访问性不好。
乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。[1] 乐观锁不能解决脏读的问题。 乐观锁则认为其他用户企图改变你正在更改的对象的概率是很小的,因此乐观锁直到你准备提交所作的更改时才将对象锁住,当你读取以及改变该对象时并不加锁。可见乐观锁加锁的时间要比悲观锁短,乐观锁可以用较大的锁粒度获得较好的并发访问性能。但是如果第二个用户恰好在第一个用户提交更改之前读取了该对象,那么当他完成了自己的更改进行提交时,数据库就会发现该对象已经变化了,这样,第二个用户不得不重新读取该对象并作出更改。这说明在乐观锁环境中,会增加并发用户读取对象的次数。
从数据库厂商的角度看,使用乐观的页锁是比较好的,尤其在影响很多行的批量操作中可以放比较少的锁,从而降低对资源的需求提高数据库的性能。再考虑聚集索引。在数据库中记录是按照聚集索引的物理顺序存放的。如果使用页锁,当两个用户同时访问更改位于同一数据页上的相邻两行时,其中一个用户必须等待另一个用户释放锁,这会明显地降低系统的性能。interbase和大多数关系数据库一样,采用的是乐观锁,而且读锁是共享的,写锁是排他的。
可以在一个读锁(共享锁)上再放置读锁,但不能再放置写锁;你不能在写锁(排它锁)上再放置任何锁。锁是目前解决多用户并发访问的有效手段。
乐观锁应用
1. 使用自增长的整数表示数据版本号。更新时检查版本号是否一致,比如数据库中数据版本为6,更新提交时version=6+1,使用该version值(=7)与数据库version+1(=7)作比较,如果相等,则可以更新,如果不等则有可能其他程序已更新该记录,所以返回错误。
2. 使用时间戳来实现.
注:对于以上两种方式,Hibernate自带实现方式:在使用乐观锁的字段前加annotation: @Version, Hibernate在更新时自动校验该字段。
悲观锁应用
需要使用数据库的锁机制,比如SQL SERVER 的TABLOCKX(排它表锁) 此选项被选中时,SQL Server 将在整个表上置排它锁直至该命令或事务结束。这将防止其他进程读取或修改表中的数据。
SqlServer中使用
Begin Tran
select top 1 @TrainNo=T_NO
from Train_ticket with (UPDLOCK) where S_Flag=0
update Train_ticket
set T_Name=user,
T_Time=getdate(),
S_Flag=1
where T_NO=@TrainNo
commit
我们在查询的时候使用了with (UPDLOCK)选项,在查询记录的时候我们就对记录加上了更新锁,表示我们即将对此记录进行更新. 注意更新锁和共享锁是不冲突的,也就是其他用户还可以查询此表的内容,但是和更新锁和排它锁是冲突的.所以其他的更新用户就会阻塞.
更新锁的意思是:“我现在只想读,你们别人也可以读,但我将来可能会做更新操作,我已经获取了从共享锁(用来读)到排他锁(用来更新)的资格”。一个事物只能有一个更新锁。当获得更新锁的事务要执行写操作时,更新锁会自动升级为排它锁。
另外,找了个很好的例子,引用一下https://yq.aliyun.com/articles/6899
注:要使用悲观锁,我们必须关闭mysql数据库的自动提交属性,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。
结论
在实际生产环境里边,如果并发量不大且不允许脏读,可以使用悲观锁解决并发问题;但如果系统的并发非常大的话,悲观锁定会带来非常大的性能问题,所以我们就要选择乐观锁定的方法.
来源:https://www.cnblogs.com/qiuhaojie/p/6840323.html