问题
I am trying to produce an algorithm where multiple agents (blue) work together as a team to capture a slightly faster enemy agent (red) by preforming surrounding and circling tactics in a 2D grid (so there is no graph or nodes and implement algorithms like A*). So I am trying to make a robust multi-agent algorithm that would allow multi-agents would capture an intelligent and faster enemy agent
However, the enemy agent (red) would just head towards the exit and run into the agents (blue) blocking it. Therefore I attempted to implement a basic obstacle avoidance where the goal is to head towards the exit while moving around agents at the same time.
However, I am having trouble making a good implementation
Diagram of my attempted obstacle avoidance algorithm
Algorithm description
Basically what happens is that the arrow, the enemy agent, will detect if there is an agent within its radius (shaped like a semi circle).
If so, it will check if there is an agent directly between the itself and the exit (using equation of line: y = mx + h).
If something is detected, the enemy agent will calculate interest points that is left and right of the detected agent. It will then try to calculate which interest point is closest to the exit. Once it finishes this, it will alter its trajectory and go to that interest point instead of dashing towards the exit and running into the agent
But the problem is that my enemy agent ends up producing zig-zag patterns and not really avoiding any of the particles and I cannot figure out a way around this.
So I was wondering if you guys can help me fix this.
Also, although the code is long, the only function that the enemy agent uses is goToExit(), so that function and any function that it calls will be the only ones relevant.
Code (to turn of obstacle avoidance, switch the obstacleAvoidance variable to False):
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
from random import randint
import random
import math
keep = False
keepX = 0
keepY = 0
### Variables that we can play with ###
interestPointVisual = False
huntEnemy = True
numOfAgents = 10
enemyTopSpeed = 0.6
topSpeed = 0.3
secondDoor = False
resultVisual = False
obstacleAvoidance = True
maxFrame = 300
####################################
phaseCount = 0
fig = plt.figure()
fig.set_dpi(100)
fig.set_size_inches(5, 4.5)
# Declaring the enemy and ally agents
ax = plt.axes(xlim=(0, 100), ylim=(0, 100))
enemy = plt.Circle((10, -10), 0.95, fc='r')
agent = plt.Circle((10, -10), 0.95, fc='b')
if interestPointVisual:
interestColor = 'y'
interestSize = 0.55
else:
interestColor = 'w'
interestSize = 0.55
#interestSize = 0.000001
midpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
eastpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
northpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
westpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
northeastpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
mideastpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
midwestpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
northwestpoint = plt.Circle((10, -10), interestSize, fc=interestColor)
# Adding the exits
rect_size = 5
x_se_s = 47
x_se = 50
y_se = 0
southExit = plt.Rectangle([x_se_s - rect_size / 2, y_se - rect_size / 2], rect_size + 3, rect_size -2 , facecolor='black', edgecolor='black')
x_ne = 50
y_ne = 101
if secondDoor:
northExit = plt.Rectangle([x_ne - rect_size / 2, y_ne - rect_size / 2], rect_size + 3, rect_size -2 , facecolor='black', edgecolor='black')
patches_ac = []
if interestPointVisual:
ax.add_patch(midpoint)
ax.add_patch(northpoint)
ax.add_patch(eastpoint)
ax.add_patch(westpoint)
ax.add_patch(mideastpoint)
ax.add_patch(midwestpoint)
ax.add_patch(northeastpoint)
ax.add_patch(northwestpoint)
# enemy, north, east, south, west
# 0 represents unoccupied, 1 represent occupied
global occupied_ar
global victory
global agentID
global timeStep
global agentLocationAR
ax.add_patch(agent)
for x in range(0, numOfAgents - 1):
agent_clone = plt.Circle((10, -10), 0.95, fc='b')
agent_clone.center = (random.randint(1, 100), random.randint(1, 100))
patches_ac.append(agent_clone)
ax.add_patch(agent_clone)
ax.add_patch(enemy)
# Adding exit patches
ax.add_patch(southExit)
if secondDoor:
ax.add_patch(northExit)
def init():
global occupied_ar
global agentLocationAR
global keep
global keepX
global keepY
keep = False
keepX = 0
keepY = 0
#enemy.center = (50, 50)
enemy.center = (random.randint(1, 100), random.randint(55, 100))
agent.center = (random.randint(1, 100), random.randint(1, 100))
occupied_ar = np.zeros([9])
agentLocationAR = np.zeros((numOfAgents,2))
for ac in patches_ac:
ac.center = (random.randint(1, 100), random.randint(1, 100))
return []
def animationManage(i):
global occupied_ar
global agentLocationAR
global victory
global agentID
global timeStep
global phaseCount
global maxFrame
timeStep = i
agentID = 1
followTarget(i, agent, enemy)
agentLocationAR[agentID-1][0], agentLocationAR[agentID-1][1] = agent.center
for ac in patches_ac:
agentID = agentID + 1
followTarget(i, ac, enemy)
agentLocationAR[agentID-1][0], agentLocationAR[agentID-1][1] = ac.center
goToExit(i, enemy, southExit)
# printing tests
if i >= maxFrame - 1:
print 'Phase ', phaseCount
phaseCount += 1
if resultVisual:
print occupied_ar
print 'Victory: ', victory
return []
def goToExit(i, patch, exit_patch):
global agentLocationAR
global keep
global keepX
global keepY
x, y = patch.center
v_x, v_y = velocity_calc_exit(patch, exit_patch)
mid_x, mid_y, rad_x, rad_y = getMidDistance(patch, exit_patch)
rad_size = math.sqrt(rad_x**2 + rad_y**2)
if obstacleAvoidance:
if i % 7 == 0:
keepX = 0
keepY = 0
keep = False
# Change path if an agent is blocking the exit
change_x, change_y = checkRadius(patch, rad_size)
#checkRadius(patch, rad_size)
if ((not (change_x == -9999)) and (not (change_y == -9999))):
v_x = change_x
v_y = change_y
keepX = change_x
keepY = change_y
keep = True
elif keep:
v_x = keepX
v_y = keepY
# x position
x += v_x
# y position
y += v_y
patch.center = (x, y)
return patch,
def followTarget(i, patch, enemy_patch):
x, y = patch.center
# Will try to follow enemy
#v_x, v_y = velocity_calc(patch, enemy_patch)
# Will follow midpoint of enemy & exit
v_x, v_y = velocity_calc_mid(patch, enemy_patch)
#print 'Here:'
#print interest_ar
# x position
x += v_x
# y position
y += v_y
patch.center = (x, y)
return patches_ac
def getInterestPoints(enemy_patch, exit_patch):
# Calculate interest points to attract agents
x, y = enemy_patch.center
# Calculate enemy-to-exit midpoint
mid_x, mid_y, rad_x, rad_y = getMidDistance(enemy_patch, exit_patch)
interest_ar = np.array([[x,y],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]])
#north
interest_ar[1][0] = x - rad_x
interest_ar[1][1] = y - rad_y
#east
interest_ar[3][0] = x - rad_y
interest_ar[3][1] = y + rad_x
#south (basically the midpoint)
interest_ar[5][0] = x + rad_x
interest_ar[5][1] = y + rad_y
#west
interest_ar[7][0] = x + rad_y
interest_ar[7][1] = y - rad_x
# northeast
interest_ar[2][0] = (interest_ar[1][0] + interest_ar[3][0])/2
interest_ar[2][1] = (interest_ar[1][1] + interest_ar[3][1])/2
#southeast
interest_ar[4][0] = (interest_ar[3][0] + interest_ar[5][0])/2
interest_ar[4][1] = (interest_ar[3][1] + interest_ar[5][1])/2
#southwest
interest_ar[6][0] = (interest_ar[5][0] + interest_ar[7][0])/2
interest_ar[6][1] = (interest_ar[5][1] + interest_ar[7][1])/2
interest_ar[8][0] = (interest_ar[7][0] + interest_ar[1][0])/2
interest_ar[8][1] = (interest_ar[7][1] + interest_ar[1][1])/2
# Setting up visuals
northpoint.center = (interest_ar[1][0], interest_ar[1][1])
eastpoint.center = (interest_ar[3][0], interest_ar[3][1])
midpoint.center = (interest_ar[5][0], interest_ar[5][1])
westpoint.center = (interest_ar[7][0], interest_ar[7][1])
mideastpoint.center = (interest_ar[2][0], interest_ar[2][1])
midwestpoint.center = (interest_ar[4][0], interest_ar[4][1])
northeastpoint.center = (interest_ar[6][0], interest_ar[6][1])
northwestpoint.center = (interest_ar[8][0], interest_ar[8][1])
return interest_ar
def findClosestInterest(agent_patch, in_ar):
# For some reason, north never gets occupied
# north east is (north/2) + (south/2)
global occupied_ar
global victory
global agentID
global timeStep
global huntEnemy
victory = False
index = -1
smallDis = 999999
tempAr = np.zeros([9])
if huntEnemy:
minDis = 0
else:
minDis = 1
# To check agent's distance of all interest points
for i in range(minDis,9):
dis = abs(int(getDistance(agent_patch, in_ar, i)))
# Add heavy weights to charge at enemy
if i == 0:
dis = dis*0.5
if occupied_ar[i] != 0:
# we must write a condition so that agent knows it is the
# one that is occupying it
dis = dis*5
# Add heavy weights to avoid the back
if i == 1 or i == 8 or i == 2:
if i == 1:
dis = dis*3
elif i == 2 or i == 8:
dis = dis*4
tempAr[i] = dis
# When we discover unoccupied shorter distance, replace index
if dis < smallDis:
# index is agent_patch.center[0] < 47 and agent_patch.center[0] > 53the index of interest_array of the closest interest point
smallDis = dis
index = i
# If the smallest distance is less than 10, we are currently engaged
if smallDis < 0.5:
# We are near or at the targeted interest point,
# now we should update array as occupied
occupied_ar[index] = agentID
if occupied_ar[0] != 0:
victory = True
#print 'engaged index ', index
else:
# Else we are still far away from the index
if occupied_ar[index] == agentID:
occupied_ar[index] = 0
#print 'lost track of index ', index
#else:
#print 'far away from index ', index
return index
def getBypassInterestPoints(user_patch,avoidX, avoidY, exit_x, exit_y):
# Mainly used by the enemy agent
# User agent will find a point around the blocking agent that is closest to
# the exit.
x,y = user_patch.center
rad_range = 20
tempX = x - avoidX
tempY = y - avoidY
diffR = math.sqrt(tempX**2 + tempY**2)
# Calculating our target x and y length
radX = (rad_range*tempX)/diffR
radY = (rad_range*tempY)/diffR
# Now we calculate the main interest points
# Since we are calculating perpendicular points, we reverse the X and Y
# in the pt calculation process
pt1X = avoidX + radY
pt1Y = avoidY - radX
###
pt2X = avoidX - radY
pt2Y = avoidY + radX
# Then we must determine which interest point is closer to the exit
pt1Dis = int(getDistanceScalar(pt1X, pt1Y,exit_x, exit_y))
pt2Dis = int(getDistanceScalar(pt2X, pt2Y,exit_x, exit_y))
'''
print 'user: ', x, ' ', y
print 'blockAgent: ', avoidX, ' ', avoidY
print 'pt1: ', pt1X, ' ', pt1Y
print 'pt2: ', pt2X, ' ', pt2Y
exit()
'''
#print '(', pt1X, ' and ', pt1Y, ') and (', pt2X, ' and ', pt2Y, ')'
#print pt1Dis, ' vs ', pt2Dis
#print int(pt1X), ' vs ', int(pt2X)
# If point 1 is closer to the exit than point 2
if(int(pt1Dis) <= int(pt2Dis)):
print int(pt1X)
return pt1X, pt1Y
print int(pt2X)
return int(pt2X), int(pt2Y)
def checkInLine(user_patch, exit_x, exit_y, avoidX, avoidY):
# Check if an agent is in the user's lined range
global agentLocationAR
x1 = exit_x
y1 = exit_y
x2, y2 = user_patch.center # the user agent
x2 = int(x2)
y2 = int(y2)
# avoidX and avoidY are the agents
# Check other y-intercepts
#return checkYInterRange(x1,y1,x2,y2, avoidX, avoidY)
# We will change y intercept to see if anything is near the main line
xThresh = 5 # the range limit of the used y intercepts
start = x2 - xThresh
finish = x2 + xThresh
# To avoid division by zero error
if x2-x1 == 0:
# That means user is directly above the exit
# They both share the same x value
for xi in range(start, finish):
#print avoidX, ' vs ', xi
# an agent is directly on the vertical line
if avoidX == xi:
#print 'There is an agent in the way'
tarX, tarY = getBypassInterestPoints(user_patch,avoidX, avoidY, exit_x, exit_y)
return tarX, tarY
return -9999, -9999
else:
for yi in range(start, finish):
lineEq = ((y2-x2)/(x2-x1))*(avoidX-x1) + yi
if avoidY == lineEq:
# There is an agent in its linear path
# Now we must calculate a point to go to in order to go around it
tarX, tarY = getBypassInterestPoints(user_patch,avoidX, avoidY, exit_x, exit_y)
#print 'There is an agent in the way'
return tarX, tarY
return -9999, -9999
def getDistanceScalar(x1, y1, x2, y2):
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def getDistance(agent_patch, in_ar, index):
x_a, y_a = agent_patch.center
x_t = in_ar[index][0]
y_t = in_ar[index][1]
# get distance between two particles
return math.sqrt((x_t - x_a)**2 + (y_t - y_a)**2)
def getMidDistance(enemy_patch, exit_patch):
# Get midpoint between enemy agent and exit
x, y = enemy_patch.center
x_e = x_se
y_e = y_se
# Get midpoint values
mid_x = (x + x_e)/2
mid_y = (y + y_e)/2
# Get radius values
rad_x = mid_x - x
rad_y = mid_y - y
# Returns (midpoint x and y) values and (radius x and y) values
return mid_x, mid_y, rad_x, rad_y
def top_speed_regulate(curr_speed, top_speed):
if curr_speed > top_speed:
return top_speed
elif curr_speed < -top_speed:
return -top_speed
else:
return curr_speed
def velocityCalcScalar(x1, y1, x2, y2):
veloX = top_speed_regulate( (x2 - x1) ,enemyTopSpeed)
veloY = top_speed_regulate( (y2 - y1) ,enemyTopSpeed)
return veloX, veloY
# Calculate velocity to rush to exit
def velocity_calc_exit(agent_patch, exit_patch):
x, y = agent_patch.center
#x_e, y_e = exit_patch.center
x_e = x_se
y_e = y_se
velo_vect = np.array([0.0, 0.0], dtype='f')
dis_limit_thresh = 1
velo_vect[0] = top_speed_regulate( (x_e - x)* dis_limit_thresh ,enemyTopSpeed)
velo_vect[1] = top_speed_regulate( (y_e - y)* dis_limit_thresh ,enemyTopSpeed)
return velo_vect[0], velo_vect[1]
# Calculate velocity to chase down enemy
def velocity_calc(agent_patch, enemy_patch):
x, y = agent_patch.center
x_e, y_e = enemy_patch.center
velo_vect = np.array([0.0, 0.0], dtype='f')
dis_limit_thresh = 1
velo_vect[0] = top_speed_regulate( (x_e - x)* dis_limit_thresh ,topSpeed)
velo_vect[1] = top_speed_regulate( (y_e - y)* dis_limit_thresh ,topSpeed)
return velo_vect[0], velo_vect[1]
# Calculate velocity to arrive at midpoint between enemy and exit
def velocity_calc_mid(agent_patch, enemy_patch):
x, y = agent_patch.center
x_e, y_e, _, _ = getMidDistance(enemy_patch, southExit)
# We get location of interest points as well as animate the interest points
interest_ar = getInterestPoints(enemy_patch, southExit)
interest_index = findClosestInterest(agent_patch, interest_ar)
x_e = interest_ar[interest_index][0]
y_e = interest_ar[interest_index][1]
velo_vect = np.array([0.0, 0.0], dtype='f')
dis_limit_thresh = 1
topSpeed = 0.3
velo_vect[0] = top_speed_regulate( (x_e - x)* dis_limit_thresh , topSpeed)
velo_vect[1] = top_speed_regulate( (y_e - y)* dis_limit_thresh , topSpeed)
return velo_vect[0], velo_vect[1]
def checkRadius(user_patch, r):
global agentLocationAR
r = 10
for i in range(0,numOfAgents-1):
x = int(agentLocationAR[i][0])
y = int(agentLocationAR[i][1])
if(inSemiRadius(user_patch, x, y, r)):
# if an agent is in the user's radius
tarX, tarY = checkInLine(user_patch, int(x_se),int(y_se) , x, y)
if (not (tarX == -9999)) and (not (tarY == -9999)):
# We have detected an agent
# Now we must change the velocity direction of the user
userX = user_patch.center[0]
userY = user_patch.center[1]
tarX, tarY = velocityCalcScalar(userX, userY, tarX, tarY)
#print 'Detected agent ', i, ' at (', x,',',y ,') while at (', user_patch.center[0], ' ', user_patch.center[1], ')'
return tarX, tarY
return -9999, -9999
def inRadius(self_patch, pointX, pointY, r):
# Helps determine if there is something near the using agent
x, y = self_patch.center # agent emitting the radius
# agent we are trying to avoid
h = pointX
k = pointY
# Equation of circle
# (x-h)^2 + (y-k)^2 <= r^2
tempX = (x - h)**2
tempY = (y - k)**2
r_2 = r**2
if tempX + tempY <= r_2:
# It is within the radius
return True
else:
return False
def inSemiRadius(self_patch, pointX, pointY, r):
# Helps determine if there is something near the using agent
h, k = self_patch.center # agent emitting the radius
# agent we are trying to avoid
x = pointX
y = pointY
# Equation of semicircle
tempTerm = r**2 - (x-h)**2
if tempTerm < 0:
# if this term is negative, that means agent to avoid is out of range
return False
tempEq = k - math.sqrt(tempTerm)
if y <= tempEq:
# It is within the radius
return True
else:
return False
def animateCos(i, patch):
x, y = patch.center
x += 0.1
y = 50 + 30 * np.cos(np.radians(i))
patch.center = (x, y)
return patch,
anim = animation.FuncAnimation(fig, animationManage,
init_func=init,
frames=maxFrame,
interval=1,
blit=True,
repeat=True)
plt.show()
Does anyone know how I can fix this? Is this even fixable or do I have to scrape this completely and look toward another obstacle avoidance algorithm?
来源:https://stackoverflow.com/questions/38618394/have-trouble-with-obstacle-avoidance-in-matplotlib