Calculate product of weights in circle (graph)

梦想的初衷 提交于 2019-12-24 21:39:24

问题


i have a directed graph, which has 0 or more circles. I would like to know if the largest product of the weights inside the circle exceeds a threshold.

Example:

               --------->
               ^        |1
       0.5     | <------v
1 -----------> 2 
^             |
|4            |1
|     2       v
4<------------3

This Graph has 4 Edges and 2 circles. The first circle (2 -> 2) has a product of 1. The second circle (1 -> 2 -> 3 -> 4 -> 1) has a product of 4. The algorithm outputs true, if the product is greater than 1, otherwise it will output false. The output for this graph is true.

My approach:

  • I am using a graph with a adjacency list
  • I am using this algorithm, which is based on DFS, to detect cycles
  • unlike the algorithm from GeeksForGeeks, I do not stop, after the first cycle, since I would like to find the cycle with the biggest products of weights
  • After finding a cycle, I remove all nodes not part of the cycle from the recursion stack
  • I use the nodes left over on the stack to calculate the product

Can you help me find the error in the following code?

My Code:

    #include <iostream>
#include <list>
#include <limits.h>
#include <vector>

using namespace std;

class Graph
{
    int V;                                                        // No. of vertices
    list<pair<int, double>> *adj;                                 // Pointer to an array containing adjacency lists
    vector<double> isCyclicUtil(int v, bool visited[], bool *rs); // used by isCyclic()
public:
    Graph(int V);                            // Constructor
    void addEdge(int v, int w, double rate); // to add an edge to graph
    bool isCyclic();                         // returns true if there is a cycle in this graph
};

Graph::Graph(int V)
{
    this->V = V;
    adj = new list<pair<int, double>>[V];
}

void Graph::addEdge(int v, int w, double rate)
{
    adj[v].push_back(make_pair(w, rate)); // Add w to v’s list.
}

vector<double> Graph::isCyclicUtil(int v, bool visited[], bool *recStack)
{
    if (visited[v] == false)
    {
        // Mark the current node as visited and part of recursion stack
        visited[v] = true;
        recStack[v] = true;

        // Recur for all the vertices adjacent to this vertex
        list<pair<int, double>>::iterator i;
        for (i = adj[v].begin(); i != adj[v].end(); ++i)
        {
            if (!visited[(*i).first])
            {
                vector<double> tmp = isCyclicUtil((*i).first, visited, recStack);
                if (tmp[0] == 1)
                {
                    // is cycle
                    double newValue = tmp[2];
                    if ((*i).first != tmp[1])
                    {
                        newValue = tmp[2] * (*i).second;
                    }
                    return vector<double>{1, tmp[1], newValue};
                }
            }
            else if (recStack[(*i).first])
            {
                // found cycle, with at node first and weight second
                return vector<double>{1, (double)(*i).first, (*i).second};
            }
        }
    }
    // remove the vertex from recursion stack
    recStack[v] = false;
    return vector<double>{0, -1, -1};
}

// Returns true if the graph contains a cycle, else false.
// This function is a variation of DFS() in https://www.geeksforgeeks.org/archives/18212
bool Graph::isCyclic()
{
    // Mark all the vertices as not visited and not part of recursion
    // stack
    bool *visited = new bool[V];
    bool *recStack = new bool[V];
    for (int i = 0; i < V; i++)
    {
        visited[i] = false;
        recStack[i] = false;
    }

    // Call the recursive helper function to detect cycle in different
    // DFS trees
    for (int i = 0; i < V; i++)
    {
        vector<double> tmp = isCyclicUtil(i, visited, recStack);
        if (tmp[2] > 1)
        {
            return true;
        }
    }
    return false;
}

int main()
{

    Graph g(); 
    // add edges to graph 

    if (g.isCyclic())
    {
        cout << "true"; 
    }
    else {
        cout << "false";
    }
}

回答1:


Here is a partial answer to the question. It is working, whenever the threshold is equal to 1.

Using Bellman Ford to detect cycles with product exceeding threshold



来源:https://stackoverflow.com/questions/50394471/calculate-product-of-weights-in-circle-graph

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!