Point inside arbitrary polygon with partitions

左心房为你撑大大i 提交于 2019-12-24 14:42:18

问题


Say I have a polygon. It can be a convex one or not, it doesn't matter, but it doesn't have holes. It also has "inner" vertices and edges, meaning that it is partitioned.

Is there any kind of popular/known algorithm or standard procedures for when I want to check if a point is inside that kind of polygon?

I'm asking because Winding Number and Ray Casting aren't accurate in this case

Thanks in advance


回答1:


You need to clarify what you mean by 'inner vertices and edges'. Let's take a very general case and hope that you find relevance.

The ray casting (point in polygon) algorithm shoots off a ray counting the intersections with the sides of the POLYGON (Odd intersections = inside, Even = outside).
Hence it accurately gives the correct result regardless of whether you start from inside the disjoint trapezoidal hole or the triangular hole (inner edges?) or even if a part of the polygon is completely seperated and/or self intersecting.
However, in what order do you feed the vertices of the polygon such that all the points are evaluated correctly?
Though this is code specific, if you're using an implementation that is counting every intersection with the sides of the polygon then this approach will work -
- Break the master polygon into polygonal components. eg - trapezoidal hole is a polygonal component.
- Start with (0,0) vertex (doesn't matter whether (0,0) actually lies wrt your polygon) followed by the first component' vertices, repeating its first vertex after the last vertex. - Include another (0,0) vertex.
- Include the next component , repeating its first vertex after the last vertex.
- Repeat the above two steps for each component.
- End with a final (0,0) vertex.
2 component eg- Let the vertices of the two components be (1x,1y), (2x,2y), (3x,3y) and (Ax,Ay), (Bx,By), (Cx,Cy). Where (Ax,Ay), (Bx,By), (Cx,Cy) could be anything from a disjoint triangular hole, intersecting triangle or separated triangle.
Hence , the vertices of a singular continous polygon which is mathematically equivalent to the 2 components is -

(0,0),(1x,1y),(2x,2y),(3x,3y),(1x,1y),(0,0),(Ax,Ay),(Bx,By),(Cx,Cy),(Ax,Ay),(0,0)

To understand how it works, try drawing this mathematically equivalent polygon on a scratch pad.-
1. Mark all the vertices but don't join them yet.
2. Mark the repeated vertices separately also. Do this by marking them close to the original points, but not on them. (at a distance e, where e->0 (tends to/approaches) ) (to help visualize)
3. Now join all the vertices in the right order (as in the example above)
You will notice that this forms a continuous polygon and only becomes disjoint at the e=0 limit.
You can now send this mathematically equivalent polygon to your ray casting function (and maybe even winding number function?) without any issues.



来源:https://stackoverflow.com/questions/27416450/point-inside-arbitrary-polygon-with-partitions

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!