问题
I have a dataframe of format given below.
movieId1 | genreList1 | genreList2
--------------------------------------------------
1 |[Adventure,Comedy] |[Adventure]
2 |[Animation,Drama,War] |[War,Drama]
3 |[Adventure,Drama] |[Drama,War]
and trying to create another flag column which shows whether genreList2 is a subset of genreList1
movieId1 | genreList1 | genreList2 | Flag
---------------------------------------------------------------
1 |[Adventure,Comedy] | [Adventure] |1
2 |[Animation,Drama,War] | [War,Drama] |1
3 |[Adventure,Drama] | [Drama,War] |0
I have tried this
def intersect_check(a: Array[String], b: Array[String]): Int = {
if (b.sameElements(a.intersect(b))) { return 1 }
else { return 2 }
}
def intersect_check_udf =
udf((colvalue1: Array[String], colvalue2: Array[String]) => intersect_check(colvalue1, colvalue2))
data = data.withColumn("Flag", intersect_check_udf(col("genreList1"), col("genreList2")))
But this throws org.apache.spark.SparkException: Failed to execute user defined function.
Error. Any ideas on how to resolve this.
P.S.: The above function (intersect_check
) works for Array
s.
回答1:
We can define an udf
that calculates the length of the intersection
between the two Array
columns and checks whether it is equal to the length of the second column. If so, the second array is a subset of the first one.
Also, the inputs of your udf
need to be class WrappedArray[String]
, not Array[String]
:
import scala.collection.mutable.WrappedArray
import org.apache.spark.sql.functions.col
val same_elements = udf { (a: WrappedArray[String],
b: WrappedArray[String]) =>
if (a.intersect(b).length == b.length){ 1 }else{ 0 }
}
df.withColumn("test",same_elements(col("genreList1"),col("genreList2")))
.show(truncate = false)
+--------+-----------------------+------------+----+
|movieId1|genreList1 |genreList2 |test|
+--------+-----------------------+------------+----+
|1 |[Adventure, Comedy] |[Adventure] |1 |
|2 |[Animation, Drama, War]|[War, Drama]|1 |
|3 |[Adventure, Drama] |[Drama, War]|0 |
+--------+-----------------------+------------+----+
Data
val df = List((1,Array("Adventure","Comedy"), Array("Adventure")),
(2,Array("Animation","Drama","War"), Array("War","Drama")),
(3,Array("Adventure","Drama"),Array("Drama","War"))).toDF("movieId1","genreList1","genreList2")
回答2:
Here is the solution converting using subsetOf
val spark =
SparkSession.builder().master("local").appName("test").getOrCreate()
import spark.implicits._
val data = spark.sparkContext.parallelize(
Seq(
(1,Array("Adventure","Comedy"),Array("Adventure")),
(2,Array("Animation","Drama","War"),Array("War","Drama")),
(3,Array("Adventure","Drama"),Array("Drama","War"))
)).toDF("movieId1", "genreList1", "genreList2")
val subsetOf = udf((col1: Seq[String], col2: Seq[String]) => {
if (col2.toSet.subsetOf(col1.toSet)) 1 else 0
})
data.withColumn("flag", subsetOf(data("genreList1"), data("genreList2"))).show()
Hope this helps!
来源:https://stackoverflow.com/questions/44158623/comparing-two-array-columns-in-scala-spark