- 一:hive 清理日志处理 统计PV、UV 访问量
- 二: hive 数据python 的数据清洗
一: 日志处理
统计每个时段网站的访问量:
1.1 在hive 上面创建表结构:
在创建表时不能直接导入问题 create table db_bflog.bf_log_src ( remote_addr string, remote_user string, time_local string, request string, status string, body_bytes_sent string, request_body string, http_referer string, http_user_agent string, http_x_forwarded_for string, host string ) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ( "input.regex" = "(\"[^ ]*\") (\"-|[^ ]*\") (\"[^\]]*\") (\"[^\"]*\") (\"[0-9]*\") (\"[0-9]*\") (-|[^ ]*) (\"[^ ]*\") (\"[^\"]*\") (-|[^ ]*) (\"[^ ]*\")" ) STORED AS TEXTFILE;
1.2 加载数据到 hive 表当中:
load data local inpath '/home/hadoop/moodle.ibeifeng.access.log' into table db_bflog.bf_log_src ;
1.3 自定义UDF函数
1.3.1:udf函数去除相关引号
package org.apache.hadoop.udf; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.hive.ql.exec.UDF; import org.apache.hadoop.io.Text; /** * * New UDF classes need to inherit from this UDF class. * * @author zhangyy * */ public class RemoveQuotesUDF extends UDF { /* 1. Implement one or more methods named "evaluate" which will be called by Hive. 2."evaluate" should never be a void method. However it can return "null" if needed. */ public Text evaluate(Text str){ if(null == str){ return null; } // validate if(StringUtils.isBlank(str.toString())){ return null ; } // lower return new Text(str.toString().replaceAll("\"", "")); } public static void main(String[] args) { System.out.println(new RemoveQuotesUDF().evaluate(new Text("\"GET /course/view.php?id=27 HTTP/1.1\""))); } }
1.3.2:udf函数时间格式进行转换
package org.apache.hadoop.udf; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Locale; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.hive.ql.exec.UDF; import org.apache.hadoop.io.Text; /** * * New UDF classes need to inherit from this UDF class. * * @author zhangyy * */ public class DateTransformUDF extends UDF { private final SimpleDateFormat inputFormat = new SimpleDateFormat("dd/MMM/yy:HH:mm:ss", Locale.ENGLISH) ; private final SimpleDateFormat outputFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") ; /* 1. Implement one or more methods named "evaluate" which will be called by Hive. 2."evaluate" should never be a void method. However it can return "null" if needed. */ /** * input: * 31/Aug/2015:00:04:37 +0800 * output: * 2015-08-31 00:04:37 */ public Text evaluate(Text str){ Text output = new Text() ; if(null == str){ return null; } // validate if(StringUtils.isBlank(str.toString())){ return null ; } try{ // 1) parse Date parseDate = inputFormat.parse(str.toString().trim()); // 2) transform String outputDate = outputFormat.format(parseDate) ; // 3) set output.set(outputDate); }catch(Exception e){ e.printStackTrace(); } // lower return output; } public static void main(String[] args) { System.out.println(new DateTransformUDF().evaluate(new Text("31/Aug/2015:00:04:37 +0800"))); } }
将RemoveQuotesUDF 与 DateTransformUDF 到出成jar 包 放到/home/hadoop/jars 目录下面:
1.4 去hive 上面 生成 udf 函数
RemoveQuotesUDF 加载成udf函数 : add jar /home/hadoop/jars/RemoveQuotesUDF.jar ; create temporary function My_RemoveQuotes as "org.apache.hadoop.udf.RemoveQuotesUDF" ; DateTransformUDF 加载成udf 函数: add jar /home/hadoop/jars/DateTransformUDF.jar ; create temporary function My_DateTransform as "org.apache.hadoop.udf.DateTransformUDF" ;
1.5 创建生成所要要求表:
create table db_bflog.bf_log_comm( remote_addr string, time_local string, request string, http_referer string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS ORC tblproperties ("orc.compress"="SNAPPY");
从原有表中提取 相关的数据处理:
insert into table db_bflog.bf_log_comm select remote_addr, time_local, request, http_referer from db_bflog.bf_log_src ;
执行sql 统计每小时的pv 访问量:
select t.hour,count(*) cnt from (select substring(my_datetransform(my_removequotes(time_local)),12,2) hour from bf_log_comm) t group by t.hour order by cnt desc ;
二: hive 数据python 的数据清洗
统计国外一家影院的每周看电影的人数 测试数据下载地址: wget http://files.grouplens.org/datasets/movielens/ml-100k.zip unzip ml-100k.zip
2.1 创建hive 的数据表
CREATE TABLE u_data ( userid INT, movieid INT, rating INT, unixtime STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;
2.2 加载数据:
LOAD DATA LOCAL INPATH '/home/hadoop/ml-100k/u.data' OVERWRITE INTO TABLE u_data;
2.3 创建weekday_mapper.py 脚本
import sys import datetime for line in sys.stdin: line = line.strip() userid, movieid, rating, unixtime = line.split('\t') weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() print '\t'.join([userid, movieid, rating, str(weekday)])
2.4 创建临时hive 表 用于提取数据:
CREATE TABLE u_data_new ( userid INT, movieid INT, rating INT, weekday INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'; 增加python 脚本到hive add FILE /home/hadoop/weekday_mapper.py;
2.5 从旧表中数据提取
INSERT OVERWRITE TABLE u_data_new SELECT TRANSFORM (userid, movieid, rating, unixtime) USING 'python weekday_mapper.py' AS (userid, movieid, rating, weekday) FROM u_data;
2.6 查找所需要的数据:
SELECT weekday, COUNT(*) FROM u_data_new GROUP BY weekday;
来源:51CTO
作者:flyfish225
链接:https://blog.51cto.com/flyfish225/2097283?source=drt