summary.lm output when using aov in R

杀马特。学长 韩版系。学妹 提交于 2019-12-23 20:09:06

问题


Related Bounty: 250 reputation points.

I have a question regarding summary.lm() output.

Firstly, here is reproducible code for my data set:

Cond_Per_Row_stats<-structure(list(Participant = structure(c(1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), .Label = c("21", "22", 
"23", "24", "25", "26", "27", "28", "29", "30"), class = "factor"), 
    Coherence = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L), .Label = c("P0.0", "P3", "P35", 
    "P4", "P45"), class = "factor"), PrimeType = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("fp", 
    "np", "tp"), class = "factor"), PrimeDuration = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1200ms", 
    "50ms"), class = "factor"), Condition = structure(c(21L, 
    21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L, 
    22L, 22L, 22L, 22L, 22L, 22L, 22L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 11L, 
    11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 
    12L, 12L, 12L, 12L, 12L, 12L, 12L, 25L, 25L, 25L, 25L, 25L, 
    25L, 25L, 25L, 25L, 25L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 
    26L, 26L, 26L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 15L, 15L, 15L, 15L, 15L, 
    15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
    16L, 16L, 16L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
    23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
    13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 29L, 
    29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 30L, 30L, 30L, 
    30L, 30L, 30L, 30L, 30L, 30L, 30L, 9L, 9L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 
    20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 27L, 27L, 27L, 
    27L, 27L, 27L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 
    28L, 28L, 28L, 28L, 28L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 17L, 17L, 
    17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 
    18L, 18L, 18L, 18L, 18L, 18L), .Label = c("P0.0np1200.0", 
    "P0.0np50.0", "P3np1200.0", "P3np50.0", "P35np1200.0", "P35np50.0", 
    "P4np1200.0", "P4np50.0", "P45np1200.0", "P45np50.0", "P0.0tp1200.0", 
    "P0.0tp50.0", "P3tp1200.0", "P3tp50.0", "P35tp1200.0", "P35tp50.0", 
    "P4tp1200.0", "P4tp50.0", "P45tp1200.0", "P45tp50.0", "P0.0fp1200.0", 
    "P0.0fp50.0", "P3fp1200.0", "P3fp50.0", "P35fp1200.0", "P35fp50.0", 
    "P4fp1200.0", "P4fp50.0", "P45fp1200.0", "P45fp50.0"), class = "factor"), 
    Accuracy = c(0.785398163397448, 0.523598775598299, 0.785398163397448, 
    0.523598775598299, 0.785398163397448, 0.869122203007293, 
    0.955316618124509, 0.785398163397448, 0.615479708670387, 
    0.701674123787604, 1.15026199151093, 1.15026199151093, 0.869122203007293, 
    0.523598775598299, 0.701674123787604, 0.701674123787604, 
    0.955316618124509, 0.701674123787604, 0.955316618124509, 
    0.615479708670387, 0.955316618124509, 0.785398163397448, 
    0.701674123787604, 0.869122203007293, 0.785398163397448, 
    0.615479708670387, 0.615479708670387, 0.869122203007293, 
    0.701674123787604, 0.615479708670387, 1.0471975511966, 0.869122203007293, 
    0.615479708670387, 0.615479708670387, 0.869122203007293, 
    0.701674123787604, 0.701674123787604, 0.869122203007293, 
    0.785398163397448, 0.869122203007293, 1.0471975511966, 0.955316618124509, 
    0.523598775598299, 1.0471975511966, 0.615479708670387, 0.955316618124509, 
    0.615479708670387, 0.785398163397448, 0.955316618124509, 
    0.785398163397448, 0.701674123787604, 0.615479708670387, 
    0.615479708670387, 0.955316618124509, 0.869122203007293, 
    0.869122203007293, 1.0471975511966, 0.785398163397448, 0.701674123787604, 
    0.785398163397448, 1.0471975511966, 0.911738290968488, 1.00028587904971, 
    0.827113206702756, 0.785398163397448, 1.00028587904971, 1.09681145610345, 
    1.00028587904971, 1.0471975511966, 1.09681145610345, 1.0471975511966, 
    0.827113206702756, 1.0471975511966, 0.420534335283965, 0.659058035826409, 
    1.0471975511966, 0.869122203007293, 1.0471975511966, 0.869122203007293, 
    0.785398163397448, 1.09681145610345, 0.785398163397448, 0.955316618124509, 
    0.911738290968488, 0.911738290968488, 1.00028587904971, 1.20942920288819, 
    1.15026199151093, 1.00028587904971, 1.20942920288819, 1.09681145610345, 
    1.0471975511966, 0.911738290968488, 0.827113206702756, 1.00028587904971, 
    0.969532110115768, 1.09681145610345, 1.00028587904971, 0.785398163397448, 
    1.09681145610345, 1.09681145610345, 0.869122203007293, 0.743683120092141, 
    0.869122203007293, 0.869122203007293, 1.0471975511966, 1.00028587904971, 
    1.09681145610345, 1.36522739563372, 1.00028587904971, 1.15026199151093, 
    0.869122203007293, 0.570510447745185, 1.20942920288819, 1.0471975511966, 
    0.955316618124509, 0.827113206702756, 1.00028587904971, 1.00028587904971, 
    1.0471975511966, 0.955316618124509, 0.911738290968488, 0.911738290968488, 
    0.570510447745185, 0.869122203007293, 1.00028587904971, 0.869122203007293, 
    0.785398163397448, 0.911738290968488, 0.869122203007293, 
    0.785398163397448, 0.701674123787604, 1.00028587904971, 0.420534335283965, 
    0.570510447745185, 0.969532110115768, 0.869122203007293, 
    0.911738290968488, 1.0471975511966, 0.785398163397448, 0.955316618124509, 
    0.827113206702756, 0.827113206702756, 0.659058035826409, 
    0.955316618124509, 0.701674123787604, 0.785398163397448, 
    0.785398163397448, 1.09681145610345, 1.0471975511966, 0.869122203007293, 
    0.827113206702756, 0.911738290968488, 0.827113206702756, 
    0.785398163397448, 0.827113206702756, 1.00028587904971, 0.911738290968488, 
    1.09681145610345, 0.955316618124509, 0.955316618124509, 1.15026199151093, 
    0.785398163397448, 0.955316618124509, 0.911738290968488, 
    1.0471975511966, 0.869122203007293, 0.869122203007293, 0.911738290968488, 
    0.955316618124509, 0.955316618124509, 0.827113206702756, 
    0.785398163397448, 0.869122203007293, 0.955316618124509, 
    0.684719203002283, 0.827113206702756, 1.00028587904971, 0.785398163397448, 
    0.827113206702756, 1.27795355506632, 1.20942920288819, 1.27795355506632, 
    1.00028587904971, 0.869122203007293, 1.15026199151093, 1.36522739563372, 
    1.27795355506632, 1.5707963267949, 1.5707963267949, 1.5707963267949, 
    1.27795355506632, 1.20942920288819, 0.911738290968488, 0.659058035826409, 
    1.36522739563372, 1.20942920288819, 1.36522739563372, 1.36522739563372, 
    1.27795355506632, 1.20942920288819, 1.0471975511966, 1.15026199151093, 
    1.15026199151093, 0.869122203007293, 1.27795355506632, 1.36522739563372, 
    1.27795355506632, 1.09681145610345, 1.36522739563372, 1.27795355506632, 
    1.00028587904971, 1.27795355506632, 1.15026199151093, 1.00028587904971, 
    1.36522739563372, 1.09681145610345, 1.15026199151093, 1.15026199151093, 
    1.36522739563372, 1.5707963267949, 1.5707963267949, 0.869122203007293, 
    1.09681145610345, 1.20942920288819, 1.36522739563372, 1.27795355506632, 
    1.27795355506632, 1.36522739563372, 1.5707963267949, 1.5707963267949, 
    1.15026199151093, 0.911738290968488, 1.20942920288819, 1.20942920288819, 
    1.28403977458335, 1.20942920288819, 1.36522739563372, 1.27795355506632, 
    1.36522739563372, 1.20942920288819, 0.911738290968488, 1.20942920288819, 
    1.0471975511966, 0.827113206702756, 1.5707963267949, 1.0471975511966, 
    1.0471975511966, 1.15026199151093, 1.27795355506632, 1.15026199151093, 
    1.00028587904971, 1.20942920288819, 0.659058035826409, 0.785398163397448, 
    1.09681145610345, 1.20942920288819, 0.827113206702756, 1.0471975511966, 
    1.20942920288819, 1.5707963267949, 0.955316618124509, 1.0471975511966, 
    1.0471975511966, 0.869122203007293, 1.20942920288819, 1.27795355506632, 
    1.09681145610345, 1.0471975511966, 1.5707963267949, 1.27795355506632, 
    0.869122203007293, 1.00028587904971, 0.911738290968488, 0.911738290968488, 
    1.00028587904971, 1.20942920288819, 1.20942920288819, 1.00028587904971, 
    1.36522739563372, 1.0471975511966, 1.09681145610345, 0.827113206702756, 
    1.15026199151093, 1.09681145610345, 1.27795355506632, 1.36522739563372, 
    1.36522739563372, 1.36522739563372, 1.15026199151093, 1.27795355506632, 
    0.955316618124509, 0.701674123787604, 1.09681145610345, 1.00028587904971, 
    1.20942920288819, 1.20942920288819, 1.20942920288819, 1.00028587904971, 
    1.36522739563372)), .Names = c("Participant", "Coherence", 
"PrimeType", "PrimeDuration", "Condition", "Accuracy"), row.names = c(20L, 
21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 49L, 50L, 51L, 52L, 
53L, 54L, 55L, 56L, 57L, 58L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 
85L, 86L, 87L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 
115L, 116L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 
145L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 
194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L, 202L, 203L, 223L, 
224L, 225L, 226L, 227L, 228L, 229L, 230L, 231L, 232L, 252L, 253L, 
254L, 255L, 256L, 257L, 258L, 259L, 260L, 261L, 281L, 282L, 283L, 
284L, 285L, 286L, 287L, 288L, 289L, 290L, 310L, 311L, 312L, 313L, 
314L, 315L, 316L, 317L, 318L, 319L, 339L, 340L, 341L, 342L, 343L, 
344L, 345L, 346L, 347L, 348L, 368L, 369L, 370L, 371L, 372L, 373L, 
374L, 375L, 376L, 377L, 397L, 398L, 399L, 400L, 401L, 402L, 403L, 
404L, 405L, 406L, 426L, 427L, 428L, 429L, 430L, 431L, 432L, 433L, 
434L, 435L, 455L, 456L, 457L, 458L, 459L, 460L, 461L, 462L, 463L, 
464L, 484L, 485L, 486L, 487L, 488L, 489L, 490L, 491L, 492L, 493L, 
513L, 514L, 515L, 516L, 517L, 518L, 519L, 520L, 521L, 522L, 542L, 
543L, 544L, 545L, 546L, 547L, 548L, 549L, 550L, 551L, 571L, 572L, 
573L, 574L, 575L, 576L, 577L, 578L, 579L, 580L, 600L, 601L, 602L, 
603L, 604L, 605L, 606L, 607L, 608L, 609L, 629L, 630L, 631L, 632L, 
633L, 634L, 635L, 636L, 637L, 638L, 658L, 659L, 660L, 661L, 662L, 
663L, 664L, 665L, 666L, 667L, 687L, 688L, 689L, 690L, 691L, 692L, 
693L, 694L, 695L, 696L, 716L, 717L, 718L, 719L, 720L, 721L, 722L, 
723L, 724L, 725L, 745L, 746L, 747L, 748L, 749L, 750L, 751L, 752L, 
753L, 754L, 774L, 775L, 776L, 777L, 778L, 779L, 780L, 781L, 782L, 
783L, 803L, 804L, 805L, 806L, 807L, 808L, 809L, 810L, 811L, 812L, 
832L, 833L, 834L, 835L, 836L, 837L, 838L, 839L, 840L, 841L, 861L, 
862L, 863L, 864L, 865L, 866L, 867L, 868L, 869L, 870L), class = "data.frame")

(NB: It is worth noting here that I changed 'Participant' to a factor prior to creating reproducible code. This is in order to ensure the output of aov matches that of a Type III ezANOVA. This does affect the output of aov making it incompatible with summary.lm(). However, this is not avoidable it seems when running a repeated measures with aov. See here for some context.)

I then change the factor levels in Condition like this:

Cond_Per_Row_stats$Condition <- factor (Cond_Per_Row_stats$Condition, levels = c("P0.0np1200.0", "P0.0np50.0",
                                                                     "P3np1200.0", "P3np50.0",
                                                                     "P35np1200.0", "P35np50.0",
                                                                     "P4np1200.0", "P4np50.0",
                                                                     "P45np1200.0", "P45np50.0",

                                                                     "P0.0tp1200.0", "P0.0tp50.0",
                                                                     "P3tp1200.0", "P3tp50.0",
                                                                     "P35tp1200.0", "P35tp50.0",
                                                                     "P4tp1200.0", "P4tp50.0",
                                                                     "P45tp1200.0", "P45tp50.0",

                                                                     "P0.0fp1200.0", "P0.0fp50.0",
                                                                     "P3fp1200.0", "P3fp50.0",
                                                                     "P35fp1200.0", "P35fp50.0",
                                                                     "P4fp1200.0", "P4fp50.0",
                                                                     "P45fp1200.0", "P45fp50.0"
                                                                 ))
Cond_Per_Row_stats <- Cond_Per_Row_stats[order(Cond_Per_Row_stats$Condition),]

I run a repeated measures aov:

    aovModel <- aov(Accuracy ~ (Coherence * PrimeDuration * PrimeType) + Error(Participant/(Coherence * PrimeDuration * PrimeType)), data = Cond_Per_Row_stats)
    summary(aovModel)

With this output:

Error: Participant
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals  9  2.045  0.2272               

Error: Participant:Coherence
          Df Sum Sq Mean Sq F value   Pr(>F)    
Coherence  4  7.800  1.9499    66.3 4.18e-16 ***
Residuals 36  1.059  0.0294                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: Participant:PrimeDuration
              Df  Sum Sq Mean Sq F value  Pr(>F)   
PrimeDuration  1 0.10509 0.10509   10.91 0.00918 **
Residuals      9 0.08668 0.00963                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: Participant:PrimeType
          Df Sum Sq Mean Sq F value Pr(>F)
PrimeType  2  0.137 0.06850   0.763  0.481
Residuals 18  1.617 0.08981               

Error: Participant:Coherence:PrimeDuration
                        Df Sum Sq Mean Sq F value Pr(>F)  
Coherence:PrimeDuration  4 0.1355 0.03387   2.443 0.0643 .
Residuals               36 0.4992 0.01387                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error: Participant:Coherence:PrimeType
                    Df Sum Sq Mean Sq F value Pr(>F)
Coherence:PrimeType  8 0.1439 0.01798   1.084  0.384
Residuals           72 1.1943 0.01659               

Error: Participant:PrimeDuration:PrimeType
                        Df Sum Sq Mean Sq F value Pr(>F)
PrimeDuration:PrimeType  2 0.0296 0.01481   0.563  0.579
Residuals               18 0.4733 0.02629               

Error: Participant:Coherence:PrimeDuration:PrimeType
                                  Df Sum Sq Mean Sq F value Pr(>F)
Coherence:PrimeDuration:PrimeType  8 0.0979 0.01223   0.884  0.534
Residuals                         72 0.9965 0.01384  

Next I attempt to conduct planned contrasts and that's where I run into problems. First of all I want to use:

summary.lm(aovModel)

But the output from the repeated measures model is not compatible:

Error in if (p == 0) { : argument is of length zero

This isn't a massive issue when I simply want a summary of the model, I can just use summary(aovModel) and inspect the SS, F-values etc there. It is a problem when I want to summarize planned contrasts using summary.lm().

For example, as you can see from the dataframe there are 30 conditions. This is the code I've put together in an attempt to create planned contrasts where the 10 np Conditions are controls and the remaining Conditions are compared to them in contrast1 and then I compare the tp and fp Conditions against each other in contrast2:

contrast1<-c(-20,-20,-20,-20,-20,-20,-20,-20,-20,-20,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10)
contrast2<-c(0,0,0,0,0,0,0,0,0,0,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10,10,10,10,10,10,10,10,10)

contrasts(Cond_Per_Row_stats$Condition)<-cbind(contrast1, contrast2)

Cond_Per_Row_stats$Condition

aovModelContrastCondition <- aov(Accuracy ~ (Coherence * PrimeDuration * PrimeType) + Error(Participant/(Coherence * PrimeDuration * PrimeType)), data = Cond_Per_Row_stats)

summary.lm(aovModelContrastCondition)

The output for summary.lm() here results in the same error as above.

However, if I run the following code calling a section directly:

summary.lm(aovModelContrastCondition$'Participant:Coherence:PrimeDuration:PrimeType')

I get this output:

Residuals:
     Min       1Q   Median       3Q      Max 
-0.23063 -0.08368 -0.02695  0.06902  0.27561 

Coefficients:
                                           Estimate Std. Error t value Pr(>|t|)  
CoherenceP3:PrimeDuration50ms:PrimeTypenp   0.15288    0.10522   1.453   0.1506  
CoherenceP35:PrimeDuration50ms:PrimeTypenp  0.13600    0.10522   1.293   0.2003  
CoherenceP4:PrimeDuration50ms:PrimeTypenp   0.07323    0.10522   0.696   0.4887  
CoherenceP45:PrimeDuration50ms:PrimeTypenp  0.09476    0.10522   0.901   0.3708  
CoherenceP3:PrimeDuration50ms:PrimeTypetp   0.10329    0.10522   0.982   0.3296  
CoherenceP35:PrimeDuration50ms:PrimeTypetp  0.22469    0.10522   2.135   0.0361 *
CoherenceP4:PrimeDuration50ms:PrimeTypetp   0.17215    0.10522   1.636   0.1062  
CoherenceP45:PrimeDuration50ms:PrimeTypetp  0.10710    0.10522   1.018   0.3122  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1176 on 72 degrees of freedom
Multiple R-squared:  0.08646,   Adjusted R-squared:  -0.002361 
F-statistic: 0.9734 on 7 and 72 DF,  p-value: 0.4572

Essentially I'm not entirely sure what I'm seeing here (especially considering how I set up contrast1 and contrast2). Examples of planned contrasts I've seen used between subjects designs and therefore do not address the issue with summary.lm() when conducting a repeated measures ANOVA.

Does anyone have any experience or know-how when it comes to adapting summary.lm() for repeated measures planned contrasts? Or is there another way of viewing the outcome of the planned contrasts in a repeated measures ANOVA using aov?

Thanks in advance.


回答1:


The emmeans package can handle aovlist objects (and many others) and calculate your custom contrasts.

At first we fit the repeated measures ANOVA using orthogonal contrasts.

library("emmeans")
# set orthogonal contrasts
options(contrasts = c("contr.sum", "contr.poly"))

aovModel <- aov(Accuracy ~ Coherence * PrimeDuration * PrimeType + 
                           Error(Participant / (Coherence * PrimeDuration * PrimeType)), 
                data = Cond_Per_Row_stats)

Now we create an emmGrid object and have a look at the estimated marginal means (EMMs) using the emmeans() function.

emm <- emmeans(aovModel, ~ Coherence * PrimeDuration * PrimeType)
emm
## Coherence PrimeDuration PrimeType    emmean         SE    df  lower.CL  upper.CL
## P0.0      1200ms        fp        0.7330383 0.05433093 91.44 0.6251235 0.8409531
## P3        1200ms        fp        0.8654093 0.05433093 91.44 0.7574945 0.9733241
## P35       1200ms        fp        0.9813125 0.05433093 91.44 0.8733977 1.0892273
## P4        1200ms        fp        1.1298314 0.05433093 91.44 1.0219167 1.2377462
## P45       1200ms        fp        1.2569780 0.05433093 91.44 1.1490632 1.3648928
## P0.0      50ms          fp        0.8324380 0.05433093 91.44 0.7245232 0.9403528
## P3        50ms          fp        0.8061391 0.05433093 91.44 0.6982243 0.9140539
## P35       50ms          fp        0.8619138 0.05433093 91.44 0.7539990 0.9698286
## P4        50ms          fp        1.0194414 0.05433093 91.44 0.9115266 1.1273562
## P45       50ms          fp        1.2212040 0.05433093 91.44 1.1132892 1.3291188
## P0.0      1200ms        np        0.7514145 0.05433093 91.44 0.6434997 0.8593293
## P3        1200ms        np        0.8640397 0.05433093 91.44 0.7561249 0.9719545
## P35       1200ms        np        1.0230695 0.05433093 91.44 0.9151547 1.1309843
## P4        1200ms        np        1.1691818 0.05433093 91.44 1.0612670 1.2770966
## P45       1200ms        np        1.1809446 0.05433093 91.44 1.0730298 1.2888594
## P0.0      50ms          np        0.7943392 0.05433093 91.44 0.6864244 0.9022540
## P3        50ms          np        0.9011751 0.05433093 91.44 0.7932603 1.0090898
## P35       50ms          np        0.9831985 0.05433093 91.44 0.8752838 1.0911133
## P4        50ms          np        1.0755496 0.05433093 91.44 0.9676348 1.1834644
## P45       50ms          np        1.1834531 0.05433093 91.44 1.0755383 1.2913679
## P0.0      1200ms        tp        0.8285699 0.05433093 91.44 0.7206552 0.9364847
## P3        1200ms        tp        0.9410529 0.05433093 91.44 0.8331381 1.0489676
## P35       1200ms        tp        0.9957669 0.05433093 91.44 0.8878521 1.1036817
## P4        1200ms        tp        1.1742093 0.05433093 91.44 1.0662945 1.2821241
## P45       1200ms        tp        1.3174114 0.05433093 91.44 1.2094966 1.4253262
## P0.0      50ms          tp        0.7945863 0.05433093 91.44 0.6866715 0.9025010
## P3        50ms          tp        0.8516896 0.05433093 91.44 0.7437749 0.9596044
## P35       50ms          tp        0.9676721 0.05433093 91.44 0.8597573 1.0755868
## P4        50ms          tp        1.1025843 0.05433093 91.44 0.9946695 1.2104990
## P45       50ms          tp        1.2553532 0.05433093 91.44 1.1474384 1.3632680

Your contrasts equate to the following hypotheses:

Considering all factor levels and their order in the emmGrid object, we can express these hypotheses equivalently as:

From this we can see the contrast weights you need for contrast1 and contrast2:

contrast1 <- rep(c(-0.5, 1, -0.5) / 10, each = 10)
contrast2 <- rep(c(-1, 0, 1) / 10, each = 10) 

To calculate your custom contrasts and get p-values we can now use the contrast() function.

contrast(emm, list(c1 = contrast1, 
                   c2 = contrast2))
## contrast     estimate         SE df t.ratio p.value
## c1       -0.004193526 0.03670287 18  -0.114  0.9103
## c2        0.052118996 0.04238082 18   1.230  0.2346

If you are only interested in contrasts related to the factor PrimeType it is even easier to construct the emmGrid object as follows:

emm <- emmeans(aovModel, ~ PrimeType)

This implicitly averages over the levels of Coherence and PrimeDuration (which is also indicated by the output).

emm
## PrimeType    emmean         SE    df  lower.CL upper.CL
## fp        0.9707706 0.03682466 21.98 0.8943978 1.047143
## np        0.9926366 0.03682466 21.98 0.9162638 1.069009
## tp        1.0228896 0.03682466 21.98 0.9465168 1.099262
##
## Results are averaged over the levels of: Coherence, PrimeDuration 

We can then specify the contrast weights for contrast1 and contrast2 by:

contrast1 <- c(-0.5, 1, -0.5)
contrast2 <- c(-1, 0, 1)

The results are equal to the ones we obtained with the "more complex" method.



来源:https://stackoverflow.com/questions/35933702/summary-lm-output-when-using-aov-in-r

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!