问题
Background: I process planetary imagery using a set of command-line utilities provided by the US Geologic Survey. Some of them are RAM hogs, to the extreme (10s of GB). USGS says it's just the way they run and don't have any plans to try to better manage the RAM. I built a Python wrapper to manipulate file lists to call the different steps to process the data in parts (such as all images taken in one color filter, and all taken in another, and all taken in another, etc.). Because things are done to multiple lists and multiple images, I thread it, using all the CPUs I can, to change stuff that might otherwise take two months to run to a week. I don't use native Python methods to thread, at the moment; instead I use GNU Parallel (and use os.system("") to call parallel and then the function) or I use Pysis, which is a Python way to call and multithread the USGS software.
Problem: As noted, some steps, for some files, take a huge amount of RAM, and there is no way of knowing ahead of time what those might be. So, I can get in a situation where for some files, each process was using 200 MB and runs fine on a 16GB RAM machine with 8 cores, but then it might start to process other files where I get RAM creep, using several GB, which with 8 processors on a 16GB RAM machine means RAM is compressed, swap space is used ... and that's if I'm lucky and the machine doesn't just lock up.
Solution? What I'm looking for is a way to monitor the RAM usage, say once a minute, by process name, and if I start to see RAM creep (e.g., 8 instances of a process each using over 2GB of RAM), I can pause all but one of those, let that one finish, un-pause another, let that finish, etc. until those 8 are done, then continue on with the rest of what might need to run for that step. Hopefully obviously, all this would be done in Python, not manually.
Is it possible to do that? If so, how?
回答1:
You can use psutil.Process.suspend()
to suspend execution of running processes which exceed a given memory threshold. The monitoring part is just repeatedly comparing psutil.Process().memory_info().rss
("Resident Set Size") of running processes with your given threshold. How you then schedule further processing is up to you.
In the example below I'm suspending culprit-processes until the rest is finished, then resume the once suspended processes one by one. This is meant to be a simplistic approach to show the general mechanism.
import time
import random
from threading import Thread
from multiprocessing import Process, active_children
import psutil
def format_mib(mem_bytes):
"""Format bytes into mebibyte-string."""
return f'{mem_bytes / 2 ** 20:.2f} MiB'
def f(append_length):
"""Main function in child-process. Appends random floats to list."""
p = psutil.Process()
li = []
for i in range(10):
li.extend([random.random() for _ in range(append_length)])
print(f'i: {i} | pid: {p.pid} | '
f'{format_mib(p.memory_full_info().rss)}')
time.sleep(2)
def monitored(running_processes, max_mib):
"""Monitor memory usage for running processes.
Suspend execution for processes surpassing `max_mib` and complete
one by one after behaving processes have finished.
"""
running_processes = [psutil.Process(pid=p.pid) for p in running_processes]
suspended_processes = []
while running_processes:
active_children() # Joins all finished processes.
# Without it, p.is_running() below on Unix would not return `False`
# for finished processes.
actual_processes = running_processes.copy()
for p in actual_processes:
if not p.is_running():
running_processes.remove(p)
print(f'removed finished process: {p}')
else:
if p.memory_info().rss / 2 ** 20 > max_mib:
print(f'suspending process: {p}')
p.suspend()
running_processes.remove(p)
suspended_processes.append(p)
time.sleep(1)
for p in suspended_processes:
print(f'\nresuming process: {p}')
p.resume()
p.wait()
if __name__ == '__main__':
MAX_MiB = 200
append_lengths = [100000, 500000, 1000000, 2000000, 300000]
processes = [Process(target=f, args=(append_length,))
for append_length in append_lengths]
for p in processes:
p.start()
m = Thread(target=monitored, args=(processes, MAX_MiB))
m.start()
m.join()
Example output (shortened) with two processes getting suspended for exceeding the 200 MiB threshold and resumed after the behaving processes have finished:
i: 0 | pid: 17997 | 13.53 MiB
i: 0 | pid: 18001 | 19.70 MiB
i: 0 | pid: 17998 | 25.88 MiB
i: 0 | pid: 17999 | 41.32 MiB
i: 0 | pid: 18000 | 72.21 MiB
...
i: 2 | pid: 17997 | 20.84 MiB
i: 2 | pid: 18001 | 42.02 MiB
i: 2 | pid: 17998 | 60.56 MiB
i: 2 | pid: 17999 | 103.36 MiB
i: 2 | pid: 18000 | 215.70 MiB
suspending process: psutil.Process(pid=18000, name='python', started='18:20:09')
i: 3 | pid: 17997 | 23.93 MiB
i: 3 | pid: 18001 | 47.75 MiB
i: 3 | pid: 17998 | 76.00 MiB
i: 3 | pid: 17999 | 141.59 MiB
...
i: 5 | pid: 17997 | 30.11 MiB
i: 5 | pid: 18001 | 68.24 MiB
i: 5 | pid: 17998 | 107.23 MiB
i: 5 | pid: 17999 | 203.52 MiB
suspending process: psutil.Process(pid=17999, name='python', started='18:20:09')
i: 6 | pid: 17997 | 33.19 MiB
i: 6 | pid: 18001 | 77.49 MiB
i: 6 | pid: 17998 | 122.59 MiB
...
i: 9 | pid: 17997 | 42.47 MiB
i: 9 | pid: 18001 | 105.68 MiB
i: 9 | pid: 17998 | 168.96 MiB
removed finished process: psutil.Process(pid=17997, status='terminated')
removed finished process: psutil.Process(pid=17998, status='terminated')
removed finished process: psutil.Process(pid=18001, status='terminated')
resuming process: psutil.Process(pid=18000, name='python', started='18:20:09')
i: 3 | pid: 18000 | 277.46 MiB
i: 4 | pid: 18000 | 339.22 MiB
i: 5 | pid: 18000 | 400.84 MiB
...
i: 9 | pid: 18000 | 648.00 MiB
resuming process: psutil.Process(pid=17999, name='python', started='18:20:09')
i: 6 | pid: 17999 | 234.55 MiB
...
i: 9 | pid: 17999 | 327.31 MiB
Process finished with exit code 0
EDIT:
I think my only remaining question from working through this is, how can I get it to spawn only a certain number of threads [sic!] at a time, as stuff completes add remaining ones, and then do all the suspended ones at the end?
I expanded the code above to enable starting new processes as old ones finish with a maximum for running processes set to the number of cores. I also refactored it into a class since it otherwise would start to get messy with all that necessary state to manage. In the code below I'm using the name "tasks" and "processes" interchangeably for brevity. Note the changed start method for processes and the accompanying comment in the code.
import time
import random
from threading import Thread
from collections import deque
from multiprocessing import Process, active_children, set_start_method
import psutil
# `def format_mib` and `def f` from above unchanged...
class TaskProcessor(Thread):
"""Processor class which monitors memory usage for running
tasks (processes). Suspends execution for tasks surpassing
`max_mib` and completes them one by one, after behaving
tasks have finished.
"""
def __init__(self, n_cores, max_mib, tasks):
super().__init__()
self.n_cores = n_cores
self.max_mib = max_mib # memory threshold
self.tasks = deque(tasks)
self._running_tasks = []
self._suspended_tasks = []
def run(self):
"""Main-function in new thread."""
self._update_running_tasks()
self._monitor_running_tasks()
self._process_suspended_tasks()
def _update_running_tasks(self):
"""Start new tasks if we have less running tasks than cores."""
while len(self._running_tasks) < self.n_cores and len(self.tasks) > 0:
p = self.tasks.popleft()
p.start()
# for further process-management we here just need the
# psutil.Process wrapper
self._running_tasks.append(psutil.Process(pid=p.pid))
print(f'Started process: {self._running_tasks[-1]}')
def _monitor_running_tasks(self):
"""Monitor running tasks. Replace completed tasks and suspend tasks
which exceed the memory threshold `self.max_mib`.
"""
# loop while we have running or non-started tasks
while self._running_tasks or self.tasks:
active_children() # Joins all finished processes.
# Without it, p.is_running() below on Unix would not return
# `False` for finished processes.
self._update_running_tasks()
actual_tasks = self._running_tasks.copy()
for p in actual_tasks:
if not p.is_running(): # process has finished
self._running_tasks.remove(p)
print(f'Removed finished process: {p}')
else:
if p.memory_info().rss / 2 ** 20 > self.max_mib:
p.suspend()
self._running_tasks.remove(p)
self._suspended_tasks.append(p)
print(f'Suspended process: {p}')
time.sleep(1)
def _process_suspended_tasks(self):
"""Resume processing of suspended tasks."""
for p in self._suspended_tasks:
print(f'\nResuming process: {p}')
p.resume()
p.wait()
if __name__ == '__main__':
# Forking (default on Unix-y systems) an already multithreaded process is
# error-prone. Since we intend to start processes after we are already
# multithreaded, we switch to another start-method.
set_start_method('spawn') # or 'forkserver' (a bit faster start up) if available
MAX_MiB = 200
N_CORES = 2
append_lengths = [100000, 500000, 1000000, 2000000, 300000]
tasks = [Process(target=f, args=(append_length,))
for append_length in append_lengths]
tp = TaskProcessor(n_cores=N_CORES, max_mib=MAX_MiB, tasks=tasks)
tp.start()
tp.join()
Example Output (shortened):
Started process: psutil.Process(pid=9422, name='python', started='13:45:53')
Started process: psutil.Process(pid=9423, name='python', started='13:45:53')
i: 0 | pid: 9422 | 18.95 MiB
i: 0 | pid: 9423 | 31.45 MiB
...
i: 9 | pid: 9422 | 47.36 MiB
i: 9 | pid: 9423 | 175.41 MiB
Removed finished process: psutil.Process(pid=9422, status='terminated')
Removed finished process: psutil.Process(pid=9423, status='terminated')
Started process: psutil.Process(pid=9445, name='python', started='13:46:15')
Started process: psutil.Process(pid=9446, name='python', started='13:46:15')
i: 0 | pid: 9445 | 46.86 MiB
i: 0 | pid: 9446 | 77.74 MiB
...
i: 2 | pid: 9445 | 117.41 MiB
i: 2 | pid: 9446 | 220.99 MiB
Suspended process: psutil.Process(pid=9446, name='python', started='13:46:15')
Started process: psutil.Process(pid=9450, name='python', started='13:46:21')
i: 0 | pid: 9450 | 25.16 MiB
i: 3 | pid: 9445 | 148.29 MiB
i: 1 | pid: 9450 | 36.47 MiB
i: 4 | pid: 9445 | 179.17 MiB
i: 2 | pid: 9450 | 45.74 MiB
i: 5 | pid: 9445 | 211.14 MiB
Suspended process: psutil.Process(pid=9445, name='python', started='13:46:15')
i: 3 | pid: 9450 | 55.00 MiB
...
i: 9 | pid: 9450 | 110.62 MiB
Removed finished process: psutil.Process(pid=9450, status='terminated')
Resuming process: psutil.Process(pid=9446, name='python', started='13:46:15')
i: 3 | pid: 9446 | 282.75 MiB
...
i: 9 | pid: 9446 | 655.35 MiB
Resuming process: psutil.Process(pid=9445, name='python', started='13:46:15')
i: 6 | pid: 9445 | 242.12 MiB
...
i: 9 | pid: 9445 | 334.88 MiB
Process finished with exit code 0
回答2:
parallel --memfree
is built for that situation:
parallel --memfree 1G doit ::: {1..100}
This will only spawn a new process if there is > 1 GB RAM free. If there is less than 0.5*1 GB free, it will kill the youngest and put that job back on the queue.
It was considered to only pause/suspend the youngest job, but experience showed that swapping that process out and in would often be much slower than to simply restarting the job.
来源:https://stackoverflow.com/questions/53493973/how-to-pause-processes-in-case-they-are-consuming-too-much-memory