退火算法

我与影子孤独终老i 提交于 2019-11-27 08:08:59

一、固体退火

什么是退火?

退火是指将固体加热到足够高的温度,使分子呈随机排列状态,然后逐步降温使之冷却,最后分子以低能状态排列,固体达到某种稳定状态。

物理退火过程?

加温过程——增强粒子的热运动,消除系统原先可能存在的非均匀态;

等温过程——对于与环境换热而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行,当自由能达到最小时,系统达到平衡态;

冷却过程——使粒子热运动减弱并渐趋有序,系统能量逐渐下降,从而得到低能的晶体结构。

固体退火应该注意?

温度越低,物体的能量状态越低,到达足够的低点时,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。缓慢降温时,可达到最低能量状态;但如果快速降温,会导致不是最低能态的非晶形。

二、类似算法比较

贪心算法

贪心算法找到的最优解是局部最优,而模拟退火算法(SAA,simulated annealing algorithm)则是全局最优。爬山是一种简单的贪心搜索算法

在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

贪心法可以解决一些最优化问题,如:求中的最小生成树、求哈夫曼编码……对于其他问题,一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。

模拟退火

与遗传算法、粒子群优化算法和蚁群算法等不同,模拟退火算法不属于群优化算法,不需要初始化种群操作。

相比于贪心算法对获取全局最优解有更大的优势。

收敛速度较慢。

影响因素多,温度管理(起始、终止温度)、退火速度(衰减函数)等对寻优结果均有影响。

三、模拟退火算法思想

思想

模拟退火算法(Simulated Annealing,简称SA)其出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性。从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解,模拟退火法是一种通用的优化算法,其物理退火过程由三部分组成,见标题一(点击跳转

模拟

模拟退火算法的模拟要求

1 初始温度足够高

2 降温过程足够慢

3 终止温度足够低

加温过程相当于对算法设定初值,等温过程对应算法的Metropolis抽样过程,冷却过程对应控制参数的下降。这里能量的变化就是目标函数,我们要得到的最优解就是能量最低态。其中Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱。

SA算法的Metropolis准则允许接受一定的恶化解,具体来讲,是以一定概率来接受非最优解。举个例子,相当于保留一些“潜力股”,使解空间里有更多的可能性。对比轮盘赌法,从概率论来讲,它是对非最优解给予概率0,即全部抛弃。

模拟退火本身是求一个最小值问题,但可以转化为求最大值问题,只需要对目标函数加个负号或者取倒数。

算法步骤

 

四、常见应用

 

五、程序

swap.m function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作 % number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ; position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : number newpath( i , : ) = oldpath ; % 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end

pathfare.m
function [ objval ] = pathfare( fare , path )
% 计 算 路 径 path 的 代 价 objval
% path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ;
% fare 为 代 价 矩 阵 , 且 为 方 阵 。
[ m , n ] = size( path ) ;
objval = zeros( 1 , m ) ;
for i = 1 : m
for j = 2 : n
objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ;
end
objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ;
end

distance.m
function [ fare ] = distance( coord )
% 根 据 各 城 市 的 距 离 坐 标 求 相 互 之 间 的 距 离
% fare 为 各 城 市 的 距 离 , coord 为 各 城 市 的 坐 标
[ v , m ] = size( coord ) ; % m 为 城 市 的 个 数
fare = zeros( m ) ;
for i = 1 : m % 外 层 为 行
for j = i : m % 内 层 为 列
fare( i , j ) = ( sum( ( coord( : , i ) - coord( : , j ) ) .^ 2 ) ) ^ 0.5 ;
fare( j , i ) = fare( i , j ) ; % 距 离 矩 阵 对 称
end
end

myplot.m
function [ ] = myplot( path , coord , pathfar )
% 做 出 路 径 的 图 形
% path 为 要 做 图 的 路 径 ,coord 为 各 个 城 市 的 坐 标
% pathfar 为 路 径 path 对 应 的 费 用
len = length( path ) ;
clf ;
hold on ;
title( [ ‘近似最短路径如下,路程为’ , num2str( pathfar ) ] ) ;
plot( coord( 1 , : ) , coord( 2 , : ) , ‘ok’);
pause( 0.4 ) ;
for ii = 2 : len
plot( coord( 1 , path( [ ii - 1 , ii ] ) ) , coord( 2 , path( [ ii - 1 , ii ] ) ) , ‘-b’);
x = sum( coord( 1 , path( [ ii - 1 , ii ] ) ) ) / 2 ;
y = sum( coord( 2 , path( [ ii - 1 , ii ] ) ) ) / 2 ;
text( x , y , [ ‘(’ , num2str( ii - 1 ) , ‘)’ ] ) ;
pause( 0.4 ) ;
end
plot( coord( 1 , path( [ 1 , len ] ) ) , coord( 2 , path( [ 1 , len ] ) ) , ‘-b’ ) ;
x = sum( coord( 1 , path( [ 1 , len ] ) ) ) / 2 ;
y = sum( coord( 2 , path( [ 1 , len ] ) ) ) / 2 ;
text( x , y , [ ‘(’ , num2str( len ) , ‘)’ ] ) ;
pause( 0.4 ) ;
hold off ;

clear;
% 程 序 参 数 设 定
Coord = … % 城 市 的 坐 标 Coordinates
[ 0.6683 0.6195 0.4 0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ; …
0.2536 0.2634 0.4439 0.1463 0.2293 0.761 0.9414 0.6536 0.5219 0.3609 ] ;
t0 = 1 ; % 初 温 t0
iLk = 20 ; % 内 循 环 最 大 迭 代 次 数 iLk
oLk = 50 ; % 外 循 环 最 大 迭 代 次 数 oLk
lam = 0.95 ; % λ lambda
istd = 0.001 ; % 若 内 循 环 函 数 值 方 差 小 于 istd 则 停 止
ostd = 0.001 ; % 若 外 循 环 函 数 值 方 差 小 于 ostd 则 停 止
ilen = 5 ; % 内 循 环 保 存 的 目 标 函 数 值 个 数
olen = 5 ; % 外 循 环 保 存 的 目 标 函 数 值 个 数
% 程 序 主 体
m = length( Coord ) ; % 城 市 的 个 数 m
fare = distance( Coord ) ; % 路 径 费 用 fare
path = 1 : m ; % 初 始 路 径 path
pathfar = pathfare( fare , path ) ; % 路 径 费 用 path fare
ores = zeros( 1 , olen ) ; % 外 循 环 保 存 的 目 标 函 数 值
e0 = pathfar ; % 能 量 初 值 e0
t = t0 ; % 温 度 t
for out = 1 : oLk % 外 循 环 模 拟 退 火 过 程
ires = zeros( 1 , ilen ) ; % 内 循 环 保 存 的 目 标 函 数 值
for in = 1 : iLk % 内 循 环 模 拟 热 平 衡 过 程
[ newpath , v ] = swap( path , 1 ) ; % 产 生 新 状 态
e1 = pathfare( fare , newpath ) ; % 新 状 态 能 量
% Metropolis 抽 样 稳 定 准 则
r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ;
if rand < r
path = newpath ; % 更 新 最 佳 状 态
e0 = e1 ;
end
ires = [ ires( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量
% 内 循 环 终 止 准 则 :连 续 ilen 个 状 态 能 量 波 动 小 于 istd
if std( ires , 1 ) < istd
break ;
end
end
ores = [ ores( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量
% 外 循 环 终 止 准 则 :连 续 olen 个 状 态 能 量 波 动 小 于 ostd
if std( ores , 1 ) < ostd
break ;
end
t = lam * t ;
end
pathfar = e0 ;
% 输 入 结 果
fprintf( '近似最优路径为:\n ’ )
%disp( char( [ path , path(1) ] + 64 ) ) ;
disp(path)
fprintf( ‘近似最优路径路程\tpathfare=’ ) ;
disp( pathfar ) ;
myplot( path , Coord , pathfar ) ;
参考链接

https://blog.csdn.net/google19890102/article/details/45395257

https://blog.csdn.net/lyxleft/article/details/82982567

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!