问题
Two's complement is when you inverse bits then add a binary 1 digit. So for example...
0011001
apply two's complement
1. inverse the bits, 1100110
2. add a binary digit, 1100110 + 1 = 1100111
Another example to show overflow situation...
1001100
apply two's complement
1. inverse the bits, 0110011
2. add a binary digit, 0110011 + 1 = 0110100
What would be the best way to implement this in python. So far I have this code, but I would like it to be more efficient because I'm using this method too much.
def toTwosComplement(binarySequence):
convertedSequence = [0] * len(binarySequence)
carryBit = 1
# INVERT THE BITS
for i in range(0, len(binarySequence)):
if binarySequence[i] == '0':
convertedSequence[i] = 1
else:
convertedSequence[i] = 0
# ADD BINARY DIGIT 1
if convertedSequence[-1] == 0: #if last digit is 0, just add the 1 then there's no carry bit so return
convertedSequence[-1] = 1
return ''.join(str(x) for x in convertedSequence)
for bit in range(0, len(binarySequence)):
if carryBit == 0:
break
index = len(binarySequence) - bit - 1
if convertedSequence[index] == 1:
convertedSequence[index] = 0
carryBit = 1
else:
convertedSequence[index] = 1
carryBit = 0
return ''.join(str(x) for x in convertedSequence)
if __name__ == '__main__':
print toTwosComplement('00110010101101001')
My question is, can I optimise this algorithm because at the moment it is running too slow for the amount of binary code I have to run it through.
回答1:
x=int(a,2)
num_bits = 10
print x - (1 << num_bits)
I think this should solve the problem
回答2:
Try this:
x = 0b11001100
complement = abs(~x) + 0b1
print bin(complement)
回答3:
using bitstring package
>>> from bitstring import BitArray
>>> a = BitArray(bin='111111111111')
>>> a.int
-1
来源:https://stackoverflow.com/questions/16813262/python-most-effective-way-to-implement-twos-complement