Nonlinear optimization with R for grouped variables

不打扰是莪最后的温柔 提交于 2019-12-22 14:51:47

问题


I am trying to find maximum values for below objective function:

objective <-function(bid,revenue,click,cost) {

    revenue_2 <- sum((revenue / cost)*                                                      
                    (bid*click*bid*(cost/click) / cost)^(-0.2*revenue/cost)*              
                    (bid*click)*bid*(cost/click))

  return(-revenue_2)
}

subject to

roas_2 <- function(bid, revenue,click,cost) {

  revenue_2 <- ((revenue / cost)*                                                      
               (bid*click*bid*(cost/click) / cost)^(-0.2*revenue/cost))*              
               (bid*click)*bid*(cost/click)

  cost_2 <- (bid*click)*bid*(cost/click)

  roas_2 <- (sum(revenue_2)/sum(cost_2)) -1.2

  return(-roas_2)
}

where my values are as follows:

click <- c(123565, 94434, 79345, 152944, 83657, 67872, 80534, 48726, 107977, 138871, 116918, 41024, 63143)
revenue <- c(117251, 91806, 75356, 105787, 84419, 44139 , 57942 ,36283, 110902 ,130689, 116093, 36541, 37718)
cost <- c(93031,74764,73168,87510,66791,37637,50043,29209,90300,103276,93972,27228,32556)
cluster <- c(1,1,1,1,1,1,1,1,1,2,2,2,2)
bid <- c(1.2,1,1.6,1,1,1.2,1.2,1,1,1,1,1,1)

I am using nloptr library of R

library(nloptr)

res <- nloptr(x0=bid,
              eval_f=objective, 
              lb=c(0,0,0,0,0,0,0,0,0,0,0,0,0),
              ub=c(2,2,2,2,2,2,2,2,2,2,2,2,2),
              eval_g_ineq  = roas_2,
              # opts = list(algorithm="NLOPT_LN_COBYLA",maxeval=1000000),
              opts = list(algorithm="NLOPT_GN_ISRES",maxeval=105000),
              revenue=revenue,
              click=click,
              cost=cost)

With above code I can find bid values which maximizes my objective function but I would like to group my values according to "cluster" and find "bid" values for each cluster which maximizes above objective function with same constraints.

Could you please help me to overcome that problem?


回答1:


I found a solution which is not best but saved my day. Briefly, I wrote loop for objective function and constraint

And new form of objective function became like.

   objective <-function(bid,revenue,click,cost, cluster) {

      revenue_2 <- 0

      for (i in 1:13) {

        t <- cluster[i]

          revenue_2[i] <- (revenue[i]/cost[i])*
                          ((bid[t]*click[i]*bid[t]*(cost[i]/click[i]) / cost[i])^(-0.2*revenue[i]/cost[i]))*
                          (bid[t]*click[i])*bid[t]*(cost[i]/click[i])

      } 

      revenue_2 <- sum(revenue_2)

      return(-revenue_2)
    }

Constraint became like:

roas_2 <- function(bid, revenue,click,cost,cluster) {

  revenue_2 <- 0
  cost_2 <- 0

  for(i in 1:13) {

    t <- cluster[i]

    revenue_2[i] <- ((revenue[i] / cost[i])*                                                     
                            (bid[t]*click[i]*bid[t]*(cost[i]/click[i]) / cost[i])^(-0.2*revenue[i]/cost[i]))*              #new cost / old cost
                            (bid[t]*click[i])*bid[t]*(cost[i]/click[i])

    cost_2[i] <- (bid[t]*click[i])*bid[t]*(cost[i]/click[i])

    roas_2 <- (sum(revenue_2)/sum(cost_2)) - 1.2 

  }

  return(-roas_2)
}

As last step I added "cluster" parameter to optimization algorithm:

res <- nloptr(x0=bid,
              eval_f=objective, 
              lb=rep_len(0, 13),
              ub=rep_len(2, 13),
              eval_g_ineq  = roas_2,
              # opts = list(algorithm="NLOPT_LN_COBYLA",maxeval=1000000),
              opts = list(algorithm="NLOPT_GN_ISRES",maxeval=100000),
              revenue=revenue,
              click=click,
              cost=cost,
              cluster=cluster)


来源:https://stackoverflow.com/questions/48037805/nonlinear-optimization-with-r-for-grouped-variables

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!