Data Augmentation in Tensorflow Object Detection API

生来就可爱ヽ(ⅴ<●) 提交于 2019-12-22 14:47:23

问题


In config file, we are given the default Augmentation option as shown below.

data_augmentation_options {
    random_horizontal_flip {
    }
  }

But I wondered how it works with the bounding box(ground truth box) values given with the training images. so I looked at preprocessor.py, random_horizontal_flip() takes 'boxes=None' parameter. Since no argument is given in the config file, I assume this flip does not account bounding box when it does the random horizontal flip.

My question is what arguments do I use to add the value of bounding box in the config file in the code snippet section shown above.


回答1:


The boxes will get flipped too. If you look down in the preprocessor file, you'll notice a map that defines what inputs of the tensor dictionary will get passed into the preprocessing function. The groundtruth boxes are passed into random_horizontal_flip.



来源:https://stackoverflow.com/questions/50293090/data-augmentation-in-tensorflow-object-detection-api

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!