How do I avoid implicit casting on non-constructing functions?
I have a function that takes an integer as a parameter,
but that function will also take characters, bools, and longs.
I believe it does this by implicitly casting them.
How can I avoid this so that the function only accepts parameters of a matching type, and will refuse to compile otherwise?
There is a keyword "explicit" but it does not work on non-constructing functions. :\
what do I do?
The following program compiles, although I'd like it not to:
#include <cstdlib>
//the function signature requires an int
void function(int i);
int main(){
int i{5};
function(i); //<- this is acceptable
char c{'a'};
function(c); //<- I would NOT like this to compile
return EXIT_SUCCESS;
}
void function(int i){return;}
*please be sure to point out any misuse of terminology and assumptions
You can't directly, because a char
automatically gets promoted to int
.
You can resort to a trick though: create a function that takes a char
as parameter and don't implement it. It will compile, but you'll get a linker error:
void function(int i)
{
}
void function(char i);
//or, in C++11
void function(char i) = delete;
Calling the function with a char
parameter will break the build.
Terminology: non-construcing functions? Do you mean a function that is not a constructor?
Define function template which matches all other types:
void function(int); // this will be selected for int only
template <class T>
void function(T) = delete; // C++11
This is because non-template functions with direct matching are always considered first. Then the function template with direct match are considered - so never function<int>
will be used. But for anything else, like char, function<char>
will be used - and this gives your compilation errrors:
void function(int) {}
template <class T>
void function(T) = delete; // C++11
int main() {
function(1);
function(char(1)); // line 12
}
ERRORS:
prog.cpp: In function 'int main()':
prog.cpp:4:6: error: deleted function 'void function(T) [with T = char]'
prog.cpp:12:20: error: used here
This is C++03 way:
// because this ugly code will give you compilation error for all other types
class DeleteOverload
{
private:
DeleteOverload(void*);
};
template <class T>
void function(T a, DeleteOverload = 0);
void function(int a)
{}
Here's a general solution that causes an error at compile time if function
is called with anything but an int
template <typename T>
struct is_int { static const bool value = false; };
template <>
struct is_int<int> { static const bool value = true; };
template <typename T>
void function(T i) {
static_assert(is_int<T>::value, "argument is not int");
return;
}
int main() {
int i = 5;
char c = 'a';
function(i);
//function(c);
return 0;
}
It works by allowing any type for the argument to function but using is_int
as a type-level predicate. The generic implementation of is_int
has a false value but the explicit specialization for the int type has value true so that the static assert guarantees that the argument has exactly type int
otherwise there is a compile error.
Well, I was going to answer this with the code below, but even though it works with Visual C++, in the sense of producing the desired compilation error, MinGW g++ 4.7.1 accepts it, and invokes the rvalue reference constructor!
I think it must be a compiler bug, but I could be wrong, so – anyone?
Anyway, here's the code, which may turn out to be a standard-compliant solution (or, it may turn out that that's a thinko on my part!):
#include <iostream>
#include <utility> // std::is_same, std::enable_if
using namespace std;
template< class Type >
struct Boxed
{
Type value;
template< class Arg >
Boxed(
Arg const& v,
typename enable_if< is_same< Type, Arg >::value, Arg >::type* = 0
)
: value( v )
{
wcout << "Generic!" << endl;
}
Boxed( Type&& v ): value( move( v ) )
{
wcout << "Rvalue!" << endl;
}
};
void function( Boxed< int > v ) {}
int main()
{
int i = 5;
function( i ); //<- this is acceptable
char c = 'a';
function( c ); //<- I would NOT like this to compile
}
For C++14 (and I believe C++11), you can disable copy constructors by overloading rvalue-references as well:
Example:
Say you have a base Binding<C>
class, where C
is either the base Constraint
class, or an inherited class. Say you are storing Binding<C>
by value in a vector, and you pass a reference to the binding and you wish to ensure that you do not cause an implicit copy.
You may do so by deleting func(Binding<C>&& x)
(per PiotrNycz's example) for rvalue-reference specific cases.
Snippet:
template<typename T>
void overload_info(const T& x) {
cout << "overload: " << "const " << name_trait<T>::name() << "&" << endl;
}
template<typename T>
void overload_info(T&& x) {
cout << "overload: " << name_trait<T>::name() << "&&" << endl;
}
template<typename T>
void disable_implicit_copy(T&& x) = delete;
template<typename T>
void disable_implicit_copy(const T& x) {
cout << "[valid] ";
overload_info<T>(x);
}
...
int main() {
Constraint c;
LinearConstraint lc(1);
Binding<Constraint> bc(&c, {});
Binding<LinearConstraint> blc(&lc, {});
CALL(overload_info<Binding<Constraint>>(bc));
CALL(overload_info<Binding<LinearConstraint>>(blc));
CALL(overload_info<Binding<Constraint>>(blc));
CALL(disable_implicit_copy<Binding<Constraint>>(bc));
// // Causes desired error
// CALL(disable_implicit_copy<Binding<Constraint>>(blc));
}
Output:
>>> overload_info(bc)
overload: T&&
>>> overload_info<Binding<Constraint>>(bc)
overload: const Binding<Constraint>&
>>> overload_info<Binding<LinearConstraint>>(blc)
overload: const Binding<LinearConstraint>&
>>> overload_info<Binding<Constraint>>(blc)
implicit copy: Binding<LinearConstraint> -> Binding<Constraint>
overload: Binding<Constraint>&&
>>> disable_implicit_copy<Binding<Constraint>>(bc)
[valid] overload: const Binding<Constraint>&
Error (with clang-3.9
in bazel
, when offending line is uncommented):
cpp_quick/prevent_implicit_conversion.cc:116:8: error: call to deleted function 'disable_implicit_copy'
CALL(disable_implicit_copy<Binding<Constraint>>(blc));
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Full Source Code: prevent_implicit_conversion.cc
Maybe you can use a struct to make the second function private:
#include <cstdlib>
struct NoCast {
static void function(int i);
private:
static void function(char c);
};
int main(){
int i(5);
NoCast::function(i); //<- this is acceptable
char c('a');
NoCast::function(c); //<- Error
return EXIT_SUCCESS;
}
void NoCast::function(int i){return;}
This won't compile:
prog.cpp: In function ‘int main()’:
prog.cpp:7: error: ‘static void NoCast::function(char)’ is private
prog.cpp:16: error: within this context
I first tried PiotrNycz's approach (for C++03, which I'm forced to use for a project), then I tried to find a more general approach and came up with this ForcedType<T>
template class.
template <typename T>
struct ForcedType {
ForcedType(T v): m_v(v) {}
operator T&() { return m_v; }
operator const T&() const { return m_v; }
private:
template <typename T2>
ForcedType(T2);
T m_v;
};
template <typename T>
struct ForcedType<const T&> {
ForcedType(const T& v): m_v(v) {}
operator const T&() const { return m_v; }
private:
template <typename T2>
ForcedType(const T2&);
const T& m_v;
};
template <typename T>
struct ForcedType<T&> {
ForcedType(T& v): m_v(v) {}
operator T&() { return m_v; }
operator const T&() const { return m_v; }
private:
template <typename T2>
ForcedType(T2&);
T& m_v;
};
If I'm not mistaken, those three specializations should cover all common use cases. I'm not sure if a specialization for rvalue-reference (on C++11 onwards) is actually needed or the by-value one suffices.
One would use it like this, in case of a function with 3 parameters whose 3rd parameter doesn't allow implicit conversions:
function(ParamType1 param1, ParamType2 param2, ForcedType<ParamType3> param3);
来源:https://stackoverflow.com/questions/12877546/how-do-i-avoid-implicit-conversions-on-non-constructing-functions