How to compute the log-likelihood of the LDA model in vowpal wabbit

末鹿安然 提交于 2019-12-22 10:19:55

问题


I am typical, regular, everyday R user. In R there is very helpful lda.collapsed.gibbs.sampler in lda package tha uses a collapsed Gibbs sampler to fit a latent Dirichlet allocation (LDA) model and returns point estimates of the latent parameters using the state at the last iteration of Gibbs sampling.

This function also has a great parameter compute.log.likelihood which, when set to TRUE, will cause the sampler to compute the log likelihood of the words (to within a constant factor) after each sweep over the variables. This is useful for assessing convergence and in comparing different LDA models (computeted for different number of topics).

I am interested if there is such an option in vowpal_wabbit's LDA model?

来源:https://stackoverflow.com/questions/31561067/how-to-compute-the-log-likelihood-of-the-lda-model-in-vowpal-wabbit

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!