问题
I am working on this browser-based experiment where i am given N specific circles (let's say they have a unique picture in them) and need to position them together, leaving as little space between them as possible. It doesn't have to be arranged in a circle, but they should be "clustered" together.
The circle sizes are customizable and a user will be able to change the sizes by dragging a javascript slider, changing some circles' sizes (for example, in 10% of the slider the circle 4 will have radius of 20px, circle 2 10px, circle 5 stays the same, etc...). As you may have already guessed, i will try to "transition" the resizing-repositioning smoothly when the slider is being moved.
The approach i have tried tried so far: instead of manually trying to position them i've tried to use a physics engine-
The idea:
- place some kind of gravitational pull in the center of the screen
- use a physics engine to take care of the balls collision
- during the "drag the time" slider event i would just set different ball sizes and let the engine take care of the rest
For this task i have used "box2Dweb". i placed a gravitational pull to the center of the screen, however, it took a really long time until the balls were placed in the center and they floated around. Then i put a small static piece of ball in the center so they would hit it and then stop. It looked like this:
The results were a bit better, but the circles still moved for some time before they went static. Even after playing around with variables like the ball friction and different gravitational pulls, the whole thing just floated around and felt very "wobbly", while i wanted the balls move only when i drag the time slider (when they change sizes). Plus, box2d doesn't allow to change the sizes of the objects and i would have to hack my way for a workaround.
So, the box2d approach made me realize that maybe to leave a physics engine to handle this isn't the best solution for the problem. Or maybe i have to include some other force i haven't thought of. I have found this similar question to mine on StackOverflow. However, the very important difference is that it just generates some n unspecific circles "at once" and doesn't allow for additional specific ball size and position manipulation.
I am really stuck now, does anyone have any ideas how to approach this problem?
update: it's been almost a year now and i totally forgot about this thread. what i did in the end is to stick to the physics model and reset forces/stop in almost idle conditions. the result can be seen here http://stateofwealth.net/ the triangles you see are inside those circles. the remaining lines are connected via "delaunay triangulation algorithm"
回答1:
I recall seeing a d3.js demo that is very similar to what you're describing. It's written by Mike Bostock himself: http://bl.ocks.org/mbostock/1747543
It uses quadtrees for fast collision detection and uses a force based graph, which are both d3.js utilities.
In the tick
function, you should be able to add a .attr("r", function(d) { return d.radius; })
which will update the radius each tick for when you change the nodes
data. Just for starters you can set it to return random and the circles should jitter around like crazy.
回答2:
(Not a comment because it wouldn't fit)
I'm impressed that you've brought in Box2D to help with the heavy-lifting, but it's true that unfortunately it is probably not well-suited to your requirements, as Box2D is at its best when you are after simulating rigid objects and their collision dynamics.
I think if you really consider what it is that you need, it isn't quite so much a rigid body dynamics problem at all. You actually want none of the complexity of box2d as all of your geometry consists of spheres (which I assure you are vastly simpler to model than arbitrary convex polygons, which is what IMO Box2D's complexity arises from), and like you mention, Box2D's inability to smoothly change the geometric parameters isn't helping as it will bog down the browser with unnecessary geometry allocations and deallocations and fail to apply any sort of smooth animation.
What you are probably looking for is an algorithm or method to evolve the positions of a set of coordinates (each with a radius that is also potentially changing) so that they stay separated by their radii and also minimize their distance to the center position. If this has to be smooth, you can't just apply the minimal solution every time, as you may get "warping" as the optimal configuration might shift dramatically at particular points along your slider's movement. Suffice it to say there is a lot of tweaking for you to do, but not really anything scarier than what one must contend with inside of Box2D.
How important is it that your circles do not overlap? I think you should just do a simple iterative "solver" that first tries to bring the circles toward their target (center of screen?), and then tries to separate them based on radii.
I believe if you try to come up with a simplified mathematical model for the motion that you want, it will be better than trying to get Box2D to do it. Box2D is magical, but it's only good at what it's good at.
回答3:
At least for me, seems like the easiest solution is to first set up the circles in a cluster. So first set the largest circle in the center, put the second circle next to the first one. For the third one you can just put it next to the first circle, and then move it along the edge until it hits the second circle.
All the other circles can follow the same method: place it next to an arbitrary circle, and move it along the edge until it is touching, but not intersecting, another circle. Note that this won't make it the most efficient clustering, but it works. After that, when you expand, say, circle 1, you'd move all the adjacent circles outward, and shift them around to re-cluster.
来源:https://stackoverflow.com/questions/17661679/position-resizable-circles-near-each-other