问题
I have a derived type (wrapper
) containing an other derived type (over
). For the latter the assignment operator have been overloaded. As the assignment of derived types happens per default componentwise, I'd expect that assigning two instances of wrapper
would invoke the overloaded assignment for over
at some point. However, using the program below, it does not seem to be the case. The overloaded assignment is only invoked if I also overload the assignment for wrapper
containing an explicit assignment between instances of over
(by uncommenting the commented code lines). Why? I find it somewhat counter intuitive. Is there any way to avoid the overloading in the wrapping type?
module test_module
implicit none
type :: over
integer :: ii = 0
end type over
type :: wrapper
type(over) :: myover
end type wrapper
interface assignment(=)
module procedure over_assign
!module procedure wrapper_assign
end interface assignment(=)
contains
subroutine over_assign(other, self)
type(over), intent(out) :: other
type(over), intent(in) :: self
print *, "Assignment of over called"
other%ii = -1
end subroutine over_assign
!subroutine wrapper_assign(other, self)
! type(wrapper), intent(out) :: other
! type(wrapper), intent(in) :: self
!
! other%myover = self%myover
!
!end subroutine wrapper_assign
end module test_module
program test
use test_module
implicit none
type(wrapper) :: w1, w2
print *, "Assigning wrapper instances:"
w2 = w1
end program test
回答1:
This [unfortunate] situation is a consequence of the rules of the language (F90+) for intrinsic assignment of derived types. The details are spelled out in F2008 7.2.1p13. As a summary, intrinsic assignment of derived types (the assignment that happens with the wrapper_assign specific commented out) does not invoke non-type bound defined assignment for any components that are of derived type. In F90/F95, if you want defined assignment at some lower level of the component hierarchy then you need to have defined assignment for all the parent components up to the base object.
F2003 added type bound defined assignment to the language and this is invoked by intrinsic assignment of derived types. Use that instead of the stand-alone generic form of specifying defined assignment. (This also avoids a potential problem with the type name being accessible but the defined assignment procedure not being accessible.)
回答2:
Just to complete the thread: the concrete realisation of IanH's suggestion (please upvote his original answer rather than this one) which worked for me was the following one:
module test_module
implicit none
type :: over
integer :: ii = 0
contains
procedure :: over_assign
generic :: assignment(=) => over_assign
end type over
type :: wrapper
type(over) :: myover
end type wrapper
contains
subroutine over_assign(other, self)
class(over), intent(out) :: other
class(over), intent(in) :: self
print *, "Assignment of over called"
other%ii = -1
end subroutine over_assign
end module test_module
program test
use test_module
implicit none
type(wrapper) :: w1, w2
print *, "Assigning wrapper instances:"
w2 = w1
end program test
来源:https://stackoverflow.com/questions/19064132/nested-derived-type-with-overloaded-assignment