What is the difference between Keras model.evaluate() and model.predict()?

时间秒杀一切 提交于 2019-12-21 09:20:20

问题


I used Keras biomedical image segmentation to segment brain neurons. I used model.evaluate() it gave me Dice coefficient: 0.916. However, when I used model.predict(), then loop through the predicted images by calculating the Dice coefficient, the Dice coefficient is 0.82. Why are these two values different?


回答1:


The problem lies in the fact that every metric in Keras is evaluated in a following manner:

  1. For each batch a metric value is evaluated.
  2. A current value of loss (after k batches is equal to a mean value of your metric across computed k batches).
  3. The final result is obtained as a mean of all losses computed for all batches.

Most of the most popular metrics (like mse, categorical_crossentropy, mae) etc. - as a mean of loss value of each example - have a property that such evaluation ends up with a proper result. But in case of Dice Coefficient - a mean of its value across all of the batches is not equal to actual value computed on a whole dataset and as model.evaluate() uses such way of computations - this is the direct cause of your problem.




回答2:


The model.evaluate function predicts the output for the given input and then computes the metrics function specified in the model.compile and based on y_true and y_pred and returns the computed metric value as the output.

The model.predict just returns back the y_pred

So if you use model.predict and then compute the metrics yourself, the computed metric value should turn out to be the same as model.evaluate

For example, one would use model.predict instead of model.evaluate in evaluating an RNN/ LSTM based models where the output needs to be fed as input in next time step




回答3:


The keras.evaluate() function will give you the loss value for every batch. The keras.predict() function will give you the actual predictions for all samples in a batch, for all batches. So even if you use the same data, the differences will be there because the value of a loss function will be almost always different than the predicted values. These are two different things.



来源:https://stackoverflow.com/questions/44476706/what-is-the-difference-between-keras-model-evaluate-and-model-predict

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!