Camera homography

好久不见. 提交于 2019-12-21 05:03:39

问题


I am learning camera matrix stuff. I already known that I can get the homography of the camera (3*3 matrix) by using four points in a plane in object space. I want to know if we can get the homagraphy with four points not in a plane? If yes, how can I get the matrix? What formulas should I look at?

I also confused homography with another concept: I only need to know three points if I want to convert from points from one coordinate to another coordinate system. So why we need four points in computing homography?


回答1:


Homography maps points 1. On plane to points at another plane 2. Projections of points in 3D (no obligatory lying on the same plane) during a pure camera rotation or zoom.

The latter can be easily verified if you look at the rays that connect points while sensor plane rotates: green are two sensor positions and black is a 3d object

Since Homography is between projections and not between objects in 3D you don’t care what these projections represent. But this can be confusing, I agree. For example you can point your camera at 3D scene (that is not flat!), then rotate your camera and the two resulting pictures of the scene will be related by homography. This is, by the way, a foundation for image panoramas.

Three point correspondences you mentioned may be reladte to a transformation called Affine (happens during large zooms when a perspective effects disappears) or to the finding a rigid rotation and translation in 3D space. Both require 3 point correspondences but the former needs only 2D points while the latter needs 3D points. The latter case has 6DOF ( 3 for rotation and 3 for translation) while each correspondence provides 2DOF, hence 6/2=3 correspondences. Homography has 8 DOF so there should be 8/2=4 correspondences;

Below is a little diagram that explains the difference between affine and homographs transformation when the original square tilts forward. In affine case the perspective effect is negligible that is far side has the same length as a near one. In the case of Homography the far side is shorter.




回答2:


If you only have 4 points - and they're not on the same plane - then computing a homography will not work.

If you have a loads of points, and 4 of them do lie on a plane but some don't, there are filters you can use to try to remove the ones not lying on a plane. The filters implemented by OpenCV are called RANSAC and LMeDs.

Also as Hammer says in a comment under your question - The 4th point is there to figure out perspective.




回答3:


Homography is a 3X3 matrix, which consists of 8 independent unknowns which means it requires 4 equations to solve these unknowns. So, in order to calculate homography we need at least 4 points.

In homography we assume that Z=0 in world scene, so the image projected is assumed as 2D. In a very famous journal named ORB-SLAM, the author formulated a scene-selective approach depending on motion parallax in scene.




回答4:


Homography is the relation between two planes and the degree of freedom in case of homography transform is 7; hence you need minimum 4 corresponding points.
4 points will give you 4 pair of (x,y) hence you can calculate 7 variables. Homography is homogines transfrom hence the (3,3) value in homography matrix is always 1.
So your first question that can you calculate homography with 3 points in the plane and 4th not on the plane : it's not possible. You need projection of that point on the plane and then you can calculate the homography.
Your 2nd question about how to calculate homography matrix, you can see implemetation of findHomography() in opencv.



来源:https://stackoverflow.com/questions/12920324/camera-homography

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!