应用程序与驱动程序交互函数DeviceIoControl详解

人盡茶涼 提交于 2019-12-21 03:32:50

这种通信方式,就是驱动程序和应用程序自定义一种IO控制码,然后调用DeviceIoControl函数,IO管理器会产生一个MajorFunction 为IRP_MJ_DEVICE_CONTROL(DeviceIoControl函数会产生此IRP),MinorFunction 为自己定义的控制码的IRP,系统就调用相应的处理IRP_MJ_DEVICE_CONTROL的派遣函数,你在派遣函数中判断MinorFunction ,是自定义的控制码你就进行相应的处理。

一.先谈一下这个定义IO控制码 ,其实可以看作是一种通信协议。

 看看CTL_CODE原型:

  #define CTL_CODE( DeviceType, Function, Method, Access ) ( \
  ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
  )

可以看到,这个宏四个参数,自然是一个32位分成了4部分,高16位存储设备类型,14~15位访问权限,2~13位操作功能,最后0,1两位就是确定缓冲区是如何与I/O和文件系统数据缓冲区进行数据传递方式,最常见的就是METHOD_BUFFERED。

   自定义CTL_CODE:

#define IOCTL_Device_Function CTL_CODE(DeviceType, Function, Method, Access)

IOCTL_Device_Function:生成的IRP的MinorFunction

DeviceType:设备对象的类型。设备类型可参考:http://blog.csdn.net/liyun123gx/article/details/38058965

Function :自定义的IO控制码。自己定义时取0x800到0xFFF,因为0x0到0x7FF是微软保留的。

Method :数据的操作模式。

          METHOD_BUFFERED:缓冲区模式

          METHOD_IN_DIRECT:直接写模式

          METHOD_OUT_DIRECT:直接读模式

          METHOD_NEITHER :Neither模式

Access:访问权限,可取值有:

        FILE_ANY_ACCESS:表明用户拥有所有的权限

        FILE_READ_DATA:表明权限为只读

        FILE_WRITE_DATA:表明权限为可写

        也可以 FILE_WRITE_DATA | FILE_READ_DATA:表明权限为可读可写,但还没达到FILE_ANY_ACCESS的权限。

   继续介绍这个缓冲区数据传递方式Method:

Method表示Ring3/Ring0的通信中的内存访问方式,有四种方式:
  #define METHOD_BUFFERED 0
  #define METHOD_IN_DIRECT 1
  #define METHOD_OUT_DIRECT 2
  #define METHOD_NEITHER 3

(1)如果使用METHOD_BUFFERED,表示系统将用户的输入输出都经过pIrp->AssociatedIrp.SystemBuffer来缓冲,因此这种方式的通信比较安全。

METHOD_BUFFERED方式相当于对Ring3的输入输出都进行了缓冲。
METHOD_BUFFERED方式(借图):
在这里插入图片描述
  (2)如果使用METHOD_IN_DIRECT或METHOD_OUT_DIRECT方式,表示系统会将输入缓冲在pIrp->AssociatedIrp.SystemBuffer中,并将输出缓冲区锁定,然后在内核模式下重新映射一段地址,这样也是比较安全的。

METHOD_IN_DIRECT和METHOD_OUT_DIRECT可称为"直接方式",是指系统依然对Ring3的输入缓冲区进行缓冲,但是对Ring3的输出缓冲区并没有缓冲,而是在内核中进行了锁定。这样Ring3输出缓冲区在驱动程序完成I/O请求之前,都是无法访问的,从一定程度上保障了安全性。如图21.1.14所示。
这两种方式,对于Ring3的输入缓冲区和METHOD_BUFFERED方式是一致的。对于Ring3的输出缓冲区,首先由系统锁定,并使用pIrp->MdlAddress来描述这段内存,驱动程序需要使用MmGetSystemAddressForMdlSafe函数将这段内存映射到内核内存地址(OutputBuffer),然后可以直接写入OutputBuffer地址,最终在驱动派遣例程返回后,由系统解除这段内存的锁定。

METHOD_IN_DIRECT和METHOD_OUT_DIRECT方式的内存访问
  8METHOD_IN_DIRECT和METHOD_OUT_DIRECT方式的区别,仅在于打开设备的权限上,当以只读权限打开设备时,METHOD_IN_DIRECT方式的IoControl将会成功,而METHOD_OUT_DIRECT方式将会失败。如果以读写权限打开设备,两种方式都会成功。

METHOD_IN_DIRECT和METHOD_OUT_DIRECT方式(借图):
  
在这里插入图片描述

(3)如果使用METHOD_NEITHER方式,“其他方式”,虽然通信的效率提高了,但是不够安全。驱动的派遣函数中输入缓冲区可以通过I/O堆栈(IO_STACK_LOCATION)的stack->Parameters.DeviceIo Control.Type3InputBuffer得到。输出缓冲区可以通过pIrp->UserBuffer得到。由于驱动中的派遣函数不能保证传递进来的用户输入和输出地址,因此最好不要直接去读写这些地址的缓冲区。应该在读写前使用ProbeForRead和ProbeForWrite函数探测地址是否可读和可写。

METHOD_ NEITHER方式是不进行缓冲的,在驱动中可以直接使用Ring3的输入输出内存地址,

驱动程序可以通过pIrpStack->Parameters.DeviceIoControl.Type3InputBuffer得到Ring3的输入缓冲区地址(其中pIrpStack是IoGetCurrentIrpStackLocation(pIrp)的返回);通过pIrp-> UserBuffer得到Ring3的输出缓冲区地址。
  由于METHOD_NEITHER方式并不安全,因此最好对Type3InputBuffer读取之前使用ProbeForRead函数进行探测,对UserBuffer写入之前使用ProbeForWrite函数进行探测,当没有发生异常时,再进行读取和写入操作。

METHOD_NEITHER方式(借图):
在这里插入图片描述

二 .定义驱动设备名,符号链接名
    定义好了IO控制码CTL_CODE,第二步驱动程序还要准备驱动设备名和符号链接名。

关于在Ring0层中要设置驱动设备名的同时还要设置符号链接名的原因,是因为只有符号链接名才可以被用户模式下的应用程序识别。

windows下的设备是以"\Device[设备名]”形式命名的。例如磁盘分区的c盘,d盘的设备名称就是"\Device\HarddiskVolume1”,"\Device\HarddiskVolume2”, 当然也可以不指定设备名称。     如果IoCreateDevice中没有指定设备名称,那么I/O管理器会自动分配一个数字作为设备的名称。例如"\Device\00000001"。\Device[设备名],不容易记忆,通常符号链接可以理解为设备的别名,更重要的是设备名,只能被内核模式下的其他驱动所识别,而别名可以被用户模式下的应用程序识别,例如c盘,就是名为"c:“的符号链接,其真正的设备对象是”\Device\HarddiskVolume1”,所以在写驱动时候,一般我们创建符号链接,即使驱动中没有用到,这也算是一个好的习惯吧。

驱动中符号链接名是这样写的
    L"\??\HelloDDK" —>??\HelloDDK

或者
    L"\DosDevices\HelloDDK"—>\DosDevices\HelloDDK

在应用程序中,符号链接名:
    L"\\.\HelloDDK"–>\.\HelloDDK

DosDevices的符号链接名就是??, 所以"\DosDevices\XXXX"其实就是\??\XXXX

#define DEVICE_OBJECT_NAME  L"\\Device\\BufferedIODeviceObjectName"
//设备与设备之间通信
#define DEVICE_LINK_NAME    L"\\DosDevices\\BufferedIODevcieLinkName"
//设备与Ring3之间通信

三、将符号链接名与设备对象名称关联 ,等待IO控制码

驱动程序要做的最后一步,先用IoCreateDevice函数创建设备对象,再用IoCreateSymbolicLink将符号链接名与设备对象名称关联 ,大功告成,等待IO控制码。

    //创建设备对象名称
RtlInitUnicodeString(&DeviceObjectName,DEVICE_OBJECT_NAME);
//创建设备对象
Status = IoCreateDevice(DriverObject,NULL,
    &DeviceObjectName,
    FILE_DEVICE_UNKNOWN,
    0, FALSE,
    &DeviceObject);
if (!NT_SUCCESS(Status))
{
    return Status;
}
 
//创建设备连接名称
RtlInitUnicodeString(&DeviceLinkName, DEVICE_LINK_NAME);
//将设备连接名称与设备名称关联
Status = IoCreateSymbolicLink(&DeviceLinkName,&DeviceObjectName);
 
if (!NT_SUCCESS(Status))
{
    IoDeleteDevice(DeviceObject);
    return Status;
}           

四、应用程序获取设备句柄,发送IO控制码。
  驱动程序铺垫打理好之后,应用程序就可以由符号链接名通过CreateFile函数获取到设备句柄DeviceHandle,再用本场的主角,DeviceIoControl通过这个DeviceHandle发送控制码了。
  先看看这两个函数:

BOOL WINAPI DeviceIoControl(
  _In_         HANDLE hDevice,       //CreateFile函数打开的设备句柄
  _In_         DWORD dwIoControlCode,//自定义的控制码
  _In_opt_     LPVOID lpInBuffer,    //输入缓冲区
  _In_         DWORD nInBufferSize,  //输入缓冲区的大小
  _Out_opt_    LPVOID lpOutBuffer,   //输出缓冲区
  _In_         DWORD nOutBufferSize, //输出缓冲区的大小
  _Out_opt_    LPDWORD lpBytesReturned, //实际返回的字节数,对应驱动程序中pIrp->IoStatus.Information。
  _Inout_opt_  LPOVERLAPPED lpOverlapped //重叠操作结构指针。同步设为NULL,DeviceIoControl将进行阻塞调用;否则,应在编程时按异步操作设计
);

HANDLE CreateFile(
  LPCTSTR lpFileName,                         //打开的文件名
  DWORD dwDesiredAccess,                    //访问权限
  DWORD dwShareMode,                      //共享模式
  LPSECURITY_ATTRIBUTES lpSecurityAttributes,   //安全属性
  DWORD dwCreationDisposition,               //文件存在与不存在时的文件创建模式
  DWORD dwFlagsAndAttributes,                //文件属性设定(隐藏、只读、压缩、指定为系统文件等)
  HANDLE hTemplateFile                       //文件副本句柄
);

最后总结一下DeviceIoControl的通信流程:

1.驱动程序和应用程序自定义好IO控制码 (CTL_CODE宏 四个参数,32位,4部分,存储设备类型,访问权限,操作功能,缓冲区数据传递方式(四种))

2.驱动程序定义驱动设备名,符号链接名, 将符号链接名与设备对象名称关联 ,等待IO控制码(IoCreateDevice,IoCreateSymbolicLink)

3.应用程序由符号链接名通过CreateFile函数获取到设备句柄DeviceHandle,再用本场的主角,DeviceIoControl通过这个设备句柄发送控制码给派遣函数。

源代码:

  BufferedIO.h
#pragma once
#include <ntifs.h>
 
#define CTL_SYS \
    CTL_CODE(FILE_DEVICE_UNKNOWN,0x830,METHOD_BUFFERED,FILE_ANY_ACCESS)
 
#define DEVICE_OBJECT_NAME  L"\\Device\\BufferedIODeviceObjectName"
//设备与设备之间通信
#define DEVICE_LINK_NAME    L"\\DosDevices\\BufferedIODevcieLinkName"
//设备与Ring3之间通信
VOID DriverUnload(PDRIVER_OBJECT DriverObject);
NTSTATUS PassThroughDispatch(PDEVICE_OBJECT  DeviceObject, PIRP Irp);
NTSTATUS ControlThroughDispatch(PDEVICE_OBJECT  DeviceObject, PIRP Irp);

BufferedIO.c

#include "BufferedIO.h"
 
NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegisterPath)
{
    NTSTATUS Status = STATUS_SUCCESS;
    PDEVICE_OBJECT  DeviceObject = NULL;
    UNICODE_STRING  DeviceObjectName;
    UNICODE_STRING  DeviceLinkName;
    ULONG           i;
    //   栈
    //   堆
    //   全局(global Static Const)
    DriverObject->DriverUnload = DriverUnload;
 
    //创建设备对象名称
    RtlInitUnicodeString(&DeviceObjectName,DEVICE_OBJECT_NAME);
 
    //创建设备对象
    Status = IoCreateDevice(DriverObject,NULL,
        &DeviceObjectName,
        FILE_DEVICE_UNKNOWN,
        0, FALSE,
        &DeviceObject);
    if (!NT_SUCCESS(Status))
    {
        return Status;
    }
    //创建设备连接名称
    RtlInitUnicodeString(&DeviceLinkName, DEVICE_LINK_NAME);
 
    //将设备连接名称与设备名称关联
    Status = IoCreateSymbolicLink(&DeviceLinkName,&DeviceObjectName);
 
    if (!NT_SUCCESS(Status))
    {
        IoDeleteDevice(DeviceObject);
        return Status;
    }
    //设计符合我们代码的派遣历程
    for (i=0;i<IRP_MJ_MAXIMUM_FUNCTION;i++)
    {
        DriverObject->MajorFunction[i] = PassThroughDispatch;   //函数指针
    }
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = ControlThroughDispatch;
    return Status;
}
//派遣历程
NTSTATUS PassThroughDispatch(PDEVICE_OBJECT  DeviceObject,PIRP Irp)
{
    Irp->IoStatus.Status = STATUS_SUCCESS;     //LastError()
    Irp->IoStatus.Information = 0;             //ReturnLength
    IoCompleteRequest(Irp, IO_NO_INCREMENT);   //将Irp返回给Io管理器
    return STATUS_SUCCESS;
}
NTSTATUS ControlThroughDispatch(PDEVICE_OBJECT  DeviceObject, PIRP Irp)
{
    NTSTATUS Status;
    ULONG_PTR Informaiton = 0;
    PVOID InputData = NULL;
    ULONG InputDataLength = 0;
    PVOID OutputData = NULL;
    ULONG OutputDataLength = 0;
    ULONG IoControlCode = 0;
    PIO_STACK_LOCATION  IoStackLocation = IoGetCurrentIrpStackLocation(Irp);  //Irp堆栈  
    IoControlCode = IoStackLocation->Parameters.DeviceIoControl.IoControlCode;
    InputData  = Irp->AssociatedIrp.SystemBuffer;
    OutputData = Irp->AssociatedIrp.SystemBuffer;
    InputDataLength  = IoStackLocation->Parameters.DeviceIoControl.InputBufferLength;
    OutputDataLength = IoStackLocation->Parameters.DeviceIoControl.OutputBufferLength;
    switch (IoControlCode)
    {
    case CTL_SYS:
    {
        if (InputData != NULL&&InputDataLength > 0)
        {
            DbgPrint("%s\r\n", InputData);
        }
        if (OutputData != NULL&&OutputDataLength >= strlen("Ring0->Ring3") + 1)
        {
            memcpy(OutputData, "Ring0->Ring3", strlen("Ring0->Ring3") + 1);
            Status = STATUS_SUCCESS;
            Informaiton = strlen("Ring0->Ring3") + 1;
        }
        else
        {
            Status = STATUS_INSUFFICIENT_RESOURCES;   //内存不够
            Informaiton = 0;
        }
        break;
    }
    default:
        break;
    }
    Irp->IoStatus.Status = Status;             //Ring3 GetLastError();
    Irp->IoStatus.Information = Informaiton;
    IoCompleteRequest(Irp, IO_NO_INCREMENT);  //将Irp返回给Io管理器
    return Status;                            //Ring3 DeviceIoControl()返回值
}
VOID DriverUnload(PDRIVER_OBJECT DriverObject)
{
    UNICODE_STRING  DeviceLinkName;
    PDEVICE_OBJECT  v1 = NULL;
    PDEVICE_OBJECT  DeleteDeviceObject = NULL;
     
    RtlInitUnicodeString(&DeviceLinkName, DEVICE_LINK_NAME);
    IoDeleteSymbolicLink(&DeviceLinkName);
 
    DeleteDeviceObject = DriverObject->DeviceObject;
    while (DeleteDeviceObject != NULL)
    {
        v1 = DeleteDeviceObject->NextDevice;
        IoDeleteDevice(DeleteDeviceObject);
        DeleteDeviceObject = v1;
    }
}   

IO.cpp

// 缓冲区IO.cpp : 定义控制台应用程序的入口点。
//
 
#include "stdafx.h"
#include <windows.h>
#define DEVICE_LINK_NAME    L"\\\\.\\BufferedIODevcieLinkName"
 
 
#define CTL_SYS \
    CTL_CODE(FILE_DEVICE_UNKNOWN,0x830,METHOD_BUFFERED,FILE_ANY_ACCESS)
int main()
{
    HANDLE DeviceHandle = CreateFile(DEVICE_LINK_NAME,
        GENERIC_READ | GENERIC_WRITE,
        FILE_SHARE_READ | FILE_SHARE_WRITE,
        NULL,
        OPEN_EXISTING,
        FILE_ATTRIBUTE_NORMAL,
        NULL);
    if (DeviceHandle==INVALID_HANDLE_VALUE)
    {
        return 0;
    }
    char BufferData = NULL;
    DWORD ReturnLength = 0;
    BOOL IsOk = DeviceIoControl(DeviceHandle, CTL_SYS,
        "Ring3->Ring0",
        strlen("Ring3->Ring0")+1,
        (LPVOID)BufferData,
        0,
        &ReturnLength,
        NULL);
    if (IsOk == FALSE)
    {
        int LastError = GetLastError();
 
        if (LastError == ERROR_NO_SYSTEM_RESOURCES)
        {
            char BufferData[MAX_PATH] = { 0 };
            IsOk = DeviceIoControl(DeviceHandle, CTL_SYS,
                "Ring3->Ring0",
                strlen("Ring3->Ring0") + 1,
                (LPVOID)BufferData,
                MAX_PATH,
                &ReturnLength,
                NULL);
 
            if (IsOk == TRUE)
            {
                printf("%s\r\n", BufferData);
            }
        }
    }
    if (DeviceHandle != NULL)
    {
        CloseHandle(DeviceHandle);
        DeviceHandle = NULL;
    }
    printf("Input AnyKey To Exit\r\n");
 
    getchar();
    return 0;
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!