def fact(n): if n == 1: return 1 return n * fact(n-1) print(fact(1)) print(fact(5)) print(fact(100)) #递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。 #使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000): #print(fact(1000)) 这一句会出现错误,递归实际上是在栈中进行的,栈空间有限,因而递归次数不能太多 #解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。 #尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况 def fact2(): return fact_iter(n, 1) def fact_iter(Inum, product): if num = 1: return product return fact_iter(num-1, num * product)
可以看到,return fact_iter(num - 1, num * product)
仅返回递归函数本身,num - 1
和num * product
在函数调用前就会被计算,不影响函数调用。
fact(5)
对应的fact_iter(5, 1)
的调用如下:
===> fact_iter(5, 1) ===> fact_iter(4, 5) ===> fact_iter(3, 20) ===> fact_iter(2, 60) ===> fact_iter(1, 120) ===> 120
尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。
遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)
函数改成尾递归方式,也会导致栈溢出。
来源:https://www.cnblogs.com/rain-1/p/5540383.html