亿级 ELK 日志平台构建实践

时光怂恿深爱的人放手 提交于 2019-12-20 20:33:00

亿级 ELK 日志平台构建实践

本篇主要讲工作中的真实经历,我们怎么打造亿级日志平台,同时手把手教大家建立起这样一套亿级 ELK 系统。日志平台具体发展历程可以参考上篇 「从 ELK 到 EFK 演进」

废话不多说,老司机们座好了,我们准备发车了~~~

整体架构

亿级 ELK 日志平台构建实践

整体架构主要分为 4 个模块,分别提供不同的功能

Filebeat:轻量级数据收集引擎。基于原先 Logstash-fowarder 的源码改造出来。换句话说:Filebeat就是新版的 Logstash-fowarder,也会是 ELK Stack 在 Agent 的第一选择。

Kafka: 数据缓冲队列。作为消息队列解耦了处理过程,同时提高了可扩展性。具有峰值处理能力,使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

Logstash :数据收集处理引擎。支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储以供后续使用。

Elasticsearch :分布式搜索引擎。具有高可伸缩、高可靠、易管理等特点。可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在使用最广的开源搜索引擎之一,Wikipedia 、StackOverflow、Github 等都基于它来构建自己的搜索引擎。

Kibana :可视化化平台。它能够搜索、展示存储在 Elasticsearch 中索引数据。使用它可以很方便的用图表、表格、地图展示和分析数据。

版本说明

Filebeat: 6.2.4
Kafka: 2.11-1
Logstash: 6.2.4
Elasticsearch: 6.2.4
Kibana: 6.2.4

相应的版本最好下载对应的插件

具体实践

我们就以比较常见的 Nginx 日志来举例说明下,日志内容是 JSON 格式

{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}
{"@timestamp":"2017-12-27T16:38:17+08:00","host":"192.168.56.11","clientip":"192.168.56.11","size":26,"responsetime":0.000,"upstreamtime":"-","upstreamhost":"-","http_host":"192.168.56.11","url":"/nginxweb/index.html","domain":"192.168.56.11","xff":"-","referer":"-","status":"200"}

Filebeat

为什么用 Filebeat ,而不用原来的 Logstash 呢?

原因很简单,资源消耗比较大。

由于 Logstash 是跑在 JVM 上面,资源消耗比较大,后来作者用 GO 写了一个功能较少但是资源消耗也小的轻量级的 Agent 叫 Logstash-forwarder。

后来作者加入 elastic.co 公司, Logstash-forwarder 的开发工作给公司内部 GO 团队来搞,最后命名为 Filebeat。

Filebeat 需要部署在每台应用服务器上,可以通过 Salt 来推送并安装配置。

下载

$ wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-6.2.4-darwin-x86_64.tar.gz

解压

tar -zxvf filebeat-6.2.4-darwin-x86_64.tar.gz
mv filebeat-6.2.4-darwin-x86_64 filebeat
cd filebeat

修改配置

修改 Filebeat 配置,支持收集本地目录日志,并输出日志到 Kafka 集群中

$ vim fileat.yml
filebeat.prospectors:
- input_type: log
  paths:
    -  /opt/logs/server/nginx.log
  json.keys_under_root: true
  json.add_error_key: true
  json.message_key: log

output.kafka:   
  hosts: ["192.168.0.1:9092,192.168.0.2:9092,192.168.0.3:9092"]
  topic: 'nginx'

Filebeat 6.0 之后一些配置参数变动比较大,比如 document_type 就不支持,需要用 fields 来代替等等。

启动

$ ./filebeat -e -c filebeat.yml

Kafka

生产环境中 Kafka 集群中节点数量建议为(2N + 1 )个,这边就以 3 个节点举例

下载

直接到官网下载 Kafka

$ wget http://mirror.bit.edu.cn/apache/kafka/1.0.0/kafka_2.11-1.0.0.tgz

解压

tar -zxvf kafka_2.11-1.0.0.tgz
mv kafka_2.11-1.0.0 kafka
cd kafka

修改 Zookeeper 配置

修改 Zookeeper 配置,搭建 Zookeeper 集群,数量 ( 2N + 1 ) 个

ZK 集群建议采用 Kafka 自带,减少网络相关的因素干扰

$ vim zookeeper.properties

tickTime=2000
dataDir=/opt/zookeeper
clientPort=2181
maxClientCnxns=50
initLimit=10
syncLimit=5

server.1=192.168.0.1:2888:3888
server.2=192.168.0.2:2888:3888
server.3=192.168.0.3:2888:3888

Zookeeper data 目录下面添加 myid 文件,内容为代表 Zooekeeper 节点 id (1,2,3),并保证不重复

$ vim /opt/zookeeper/myid
1

启动 Zookeeper 节点

分别启动 3 台 Zookeeper 节点,保证集群的高可用

$ ./zookeeper-server-start.sh -daemon ./config/zookeeper.properties

修改 Kafka 配置

kafka 集群这边搭建为 3 台,可以逐个修改 Kafka 配置,需要注意其中 broker.id 分别 (1,2,3)

$ vim ./config/server.properties
broker.id=1
port=9092
host.name=192.168.0.1
num.replica.fetchers=1
log.dirs=/opt/kafka_logs
num.partitions=3
zookeeper.connect=192.168.0.1: 192.168.0.2: 192.168.0.3:2181
zookeeper.connection.timeout.ms=6000
zookeeper.sync.time.ms=2000
num.io.threads=8
num.network.threads=8
queued.max.requests=16
fetch.purgatory.purge.interval.requests=100
producer.purgatory.purge.interval.requests=100
delete.topic.enable=true

启动 Kafka 集群

分别启动 3 台 Kafka 节点,保证集群的高可用

$ ./bin/kafka-server-start.sh -daemon ./config/server.properties

查看 topic 是否创建成功

$ bin/kafka-topics.sh --list --zookeeper localhost:2181

nginx

监控 Kafka Manager

Kafka-manager 是 Yahoo 公司开源的集群管理工具。

可以在 Github 上下载安装:https://github.com/yahoo/kafka-manager

亿级 ELK 日志平台构建实践

如果遇到 Kafka 消费不及时的话,可以通过到具体 cluster 页面上,增加 partition。Kafka 通过 partition 分区来提高并发消费速度

亿级 ELK 日志平台构建实践

Logstash

Logstash 提供三大功能

  • INPUT 进入
  • FILTER 过滤功能
  • OUTPUT 出去

如果使用 Filter 功能的话,强烈推荐大家使用 Grok debugger 来预先解析日志格式。

亿级 ELK 日志平台构建实践

下载

$ wget https://artifacts.elastic.co/downloads/logstash/logstash-6.2.4.tar.gz

解压重命名

$ tar -zxvf logstash-6.2.4.tar.gz
$ mv logstash-6.2.4 logstash

修改 Logstash 配置

修改 Logstash 配置,使之提供 indexer 的功能,将数据插入到 Elasticsearch 集群中

$ vim nginx.conf

input {
  kafka {
    type => "kafka"
    bootstrap_servers => "192.168.0.1:2181,192.168.0.2:2181,192.168.0.3:2181"
    topics => "nginx"
    group_id => "logstash"
    consumer_threads => 2
  }
}

output {
  elasticsearch {
    host => ["192.168.0.1","192.168.0.2","192.168.0.3"]
    port => "9300"
    index => "nginx-%{+YYYY.MM.dd}"
  }
}

启动 Logstash

$ ./bin/logstash -f nginx.conf

Elasticsearch

下载

$ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.2.4.tar.gz

解压

$ tar -zxvf elasticsearch-6.2.4.tar.gz
$ mv elasticsearch-6.2.4.tar.gz elasticsearch

修改配置

$ vim config/elasticsearch.yml

cluster.name: es 
node.name: es-node1
network.host: 192.168.0.1
discovery.zen.ping.unicast.hosts: ["192.168.0.1"]
discovery.zen.minimum_master_nodes: 1

启动

通过 -d 来后台启动

$ ./bin/elasticsearch -d

打开网页 http://192.168.0.1:9200/, 如果出现下面信息说明配置成功

{
    name: "es-node1",
    cluster_name: "es",
    cluster_uuid: "XvoyA_NYTSSV8pJg0Xb23A",
    version: {
        number: "6.2.4",
        build_hash: "ccec39f",
        build_date: "2018-04-12T20:37:28.497551Z",
        build_snapshot: false,
        lucene_version: "7.2.1",
        minimum_wire_compatibility_version: "5.6.0",
        minimum_index_compatibility_version: "5.0.0"
    },
    tagline: "You Know, for Search"
}

控制台

Cerebro 这个名字大家可能觉得很陌生,其实过去它的名字叫 kopf !因为 Elasticsearch 5.0 不再支持 site plugin,所以 kopf 作者放弃了原项目,另起炉灶搞了 cerebro,以独立的单页应用形式,继续支持新版本下 Elasticsearch 的管理工作。

亿级 ELK 日志平台构建实践

注意点

  1. Master 与 Data 节点分离,当 Data 节点大于 3 个的时候,建议责任分离,减轻压力
  2. Data Node 内存不超过 32G ,建议设置成 31 G ,具体原因可以看上一篇文章
  3. discovery.zen.minimum_master_nodes 设置成 ( total / 2 + 1 ),避免脑裂情况
  4. 最重要的一点,不要将 ES 暴露在公网中,建议都安装 X-PACK ,来加强其安全性

kibana

下载

$ wget https://artifacts.elastic.co/downloads/kibana/kibana-6.2.4-darwin-x86_64.tar.gz

解压

$ tar -zxvf kibana-6.2.4-darwin-x86_64.tar.gz
$ mv kibana-6.2.4-darwin-x86_64.tar.gz kibana

修改配置

$ vim config/kibana.yml

server.port: 5601
server.host: "192.168.0.1"
elasticsearch.url: "http://192.168.0.1:9200"

启动 Kibana

$ nohup ./bin/kibana &

界面展示

创建索引页面需要到 Management -> Index Patterns 中通过前缀来指定

亿级 ELK 日志平台构建实践

最终效果展示

亿级 ELK 日志平台构建实践

总结

综上,通过上面部署命令来实现 ELK 的整套组件,包含了日志收集、过滤、索引和可视化的全部流程,基于这套系统实现分析日志功能。同时,通过水平扩展 Kafka、Elasticsearch 集群,可以实现日均亿级的日志实时处理。


所有好的架构设计首要的原则并不是追求先进,而是合理性,要与公司的业务规模和发展趋势相匹配,任何一个公司,哪怕是现在看来规模非常大的公司,比如 BAT 之类,在一开始,其系统架构也应简单和清晰的。

但随着业务范围不断扩充,业务规模不断扩大,系统渐进复杂和庞大,让所有系统都遇到高可用的问题。那我们该如何避免类似的问题,构建高可用系统呢?

为此我特意写了一个专栏《带你玩转高可用》,将多年来在百度和沪江的架构设计实战经验,集结成这个专栏。

本专栏总共包含 15 篇文章,分成三大模块详细解释高可用架构的相关知识:

概念篇:介绍高可用架构理论与演进,这块比较偏理论。不过对于我们理解整套体系还是有必须的。
工程篇:介绍常见互联网分层中每一层高可用是怎么做的,包含 DNS、服务层、缓存层、数据层等
问题篇:介绍怎么排查线上常用的故障,包括机器、应用层等维度故障定位
专栏每周都会更新,持续 64 天。在这将近 2 个月内,我会带着大家去全面了解高可用架构的方方面面,同时会将遇到的这些问题和对应的解决方案抛出来,希望大家不要重复我遇到过的坑。同时也期待大家提出有意思的问题。

专栏地址:带你玩转高可用
亿级 ELK 日志平台构建实践

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!