机器学习和统计中的AUC

十年热恋 提交于 2019-12-20 01:08:19

首先,在试图弄懂AUC和ROC曲线之前,一定,一定要彻底理解混淆矩阵的定义!!!混淆矩阵中有着Positive、Negative、True、False的概念,其意义如下:称预测类别为1的为Positive(阳性),预测类别为0的为Negative(阴性)。预测正确的为True(真),预测错误的为False(伪)。对上述概念进行组合,就产生了如下的混淆矩阵:

在这里插入图片描述
然后,由此引出True Positive Rate(真阳率)、False Positive(伪阳率)两个概念:
在这里插入图片描述
仔细看这两个公式,发现其实TPRate就是TP除以TP所在的列,FPRate就是FP除以FP所在的列,二者意义如下:
TPRate的意义是所有真实类别为1的样本中,预测类别为1的比例。
FPRate的意义是所有真实类别为0的样本中,预测类别为1的比例。

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!