问题
Considering a pandas dataframe in python having a column named time
of type integer, I can convert it to a datetime
format with the following instruction.
df['time'] = pandas.to_datetime(df['time'], unit='s')
so now the column has entries like: 2019-01-15 13:25:43
.
What is the command to revert the string to an integer timestamp value (representing the number of seconds elapsed from 1970-01-01 00:00:00
)?
I checked pandas.Timestamp
but could not find a conversion utility and I was not able to use pandas.to_timedelta
for this.
Is there any utility for this conversion?
回答1:
You can typecast to int using astype(int)
and divide it by 10**9
to get the number of seconds to the unix epoch start.
import pandas as pd
df = pd.DataFrame({'time': [pd.to_datetime('2019-01-15 13:25:43')]})
df_unix_sec = pd.to_datetime(df['time']).astype(int)/ 10**9
print(df_unix_sec)
回答2:
Use .dt.total_seconds()
on a timedelta64
:
import pandas as pd
df = pd.DataFrame({'time': [pd.to_datetime('2019-01-15 13:25:43')]})
# pd.to_timedelta(df.time).dt.total_seconds() # Is deprecated
(df.time - pd.to_datetime('1970-01-01')).dt.total_seconds()
Output
0 1.547559e+09
Name: time, dtype: float64
回答3:
The easiest way is to use .value
pd.to_datetime('1970-01-01').value
来源:https://stackoverflow.com/questions/54312802/pandas-convert-from-datetime-to-integer-timestamp