Spark cosine distance between rows using Dataframe

◇◆丶佛笑我妖孽 提交于 2019-12-18 17:25:49

问题


I have to compute a cosine distance between each rows but I have no idea how to do it using Spark API Dataframes elegantly. The idea is to compute similarities for each rows(items) and take top 10 similarities by comparing their similarities between rows. --> This is need for Item-Item Recommender System.

All that I've read about it is referred to computing similarity over columns Apache Spark Python Cosine Similarity over DataFrames May someone say is it possible to compute a cosine distance elegantly between rows using PySpark Dataframe's API or RDD's or I have to do it manually?

That's just some code to show what I intend to do

def cosineSimilarity(vec1, vec2):
    return vec1.dot(vec2) / (LA.norm(vec1) * LA.norm(vec2))


#p.s model is ALS
Pred_Factors = model.itemFactors.cache() #Pred_Factors = DataFrame[id: int, features: array<float>]

sims = []

for _id,_feature in Pred_Factors.toLocalIterator():
    for id, feature in Pred_Factors.toLocalIterator():

        itemFactor = _feature

        sims = sims.append(_id, cosineSimilarity(asarray(feature),itemFactor))

sims = sc.parallelize(l)
sortedSims = sims.takeOrdered(10, key=lambda x: -x[1])

Thanks in Advance for all the help


回答1:


You can use mllib.feature.IndexedRowMatrix's columnSimilarities function. It uses cosine metrics as distance function. It computes similarities between columns so, you have to take transpose before applying this function.

pred_ = IndexedRowMatrix(Pred_Factors.rdd.map(lambda x: IndexedRow(x[0],x[1]))).toBlockMatrix().transpose().toIndexedRowMatrix()
pred_sims = pred.columnSimilarities()


来源:https://stackoverflow.com/questions/46663775/spark-cosine-distance-between-rows-using-dataframe

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!