问题
I feel like this is a fairly common problem but I haven't yet found a suitable answer. I have many audio files of human speech that I would like to break on words, which can be done heuristically by looking at pauses in the waveform, but can anyone point me to a function/library in python that does this automatically?
回答1:
An easier way to do this is using pydub module. recent addition of silent utilities does all the heavy lifting such as setting up silence threahold
, setting up silence length
. etc and simplifies code significantly as opposed to other methods mentioned.
Here is an demo implementation , inspiration from here
Setup:
I had a audio file with spoken english letters from A
to Z
in the file "a-z.wav". A sub-directory splitAudio
was created in the current working directory. Upon executing the demo code, the files were split onto 26 separate files with each audio file storing each syllable.
Observations:
Some of the syllables were cut off, possibly needing modification of following parameters,min_silence_len=500
silence_thresh=-16
One may want to tune these to one's own requirement.
Demo Code:
from pydub import AudioSegment
from pydub.silence import split_on_silence
sound_file = AudioSegment.from_wav("a-z.wav")
audio_chunks = split_on_silence(sound_file,
# must be silent for at least half a second
min_silence_len=500,
# consider it silent if quieter than -16 dBFS
silence_thresh=-16
)
for i, chunk in enumerate(audio_chunks):
out_file = ".//splitAudio//chunk{0}.wav".format(i)
print "exporting", out_file
chunk.export(out_file, format="wav")
Output:
Python 2.7.9 (default, Dec 10 2014, 12:24:55) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
exporting .//splitAudio//chunk0.wav
exporting .//splitAudio//chunk1.wav
exporting .//splitAudio//chunk2.wav
exporting .//splitAudio//chunk3.wav
exporting .//splitAudio//chunk4.wav
exporting .//splitAudio//chunk5.wav
exporting .//splitAudio//chunk6.wav
exporting .//splitAudio//chunk7.wav
exporting .//splitAudio//chunk8.wav
exporting .//splitAudio//chunk9.wav
exporting .//splitAudio//chunk10.wav
exporting .//splitAudio//chunk11.wav
exporting .//splitAudio//chunk12.wav
exporting .//splitAudio//chunk13.wav
exporting .//splitAudio//chunk14.wav
exporting .//splitAudio//chunk15.wav
exporting .//splitAudio//chunk16.wav
exporting .//splitAudio//chunk17.wav
exporting .//splitAudio//chunk18.wav
exporting .//splitAudio//chunk19.wav
exporting .//splitAudio//chunk20.wav
exporting .//splitAudio//chunk21.wav
exporting .//splitAudio//chunk22.wav
exporting .//splitAudio//chunk23.wav
exporting .//splitAudio//chunk24.wav
exporting .//splitAudio//chunk25.wav
exporting .//splitAudio//chunk26.wav
>>>
回答2:
You could look at Audiolab It provides a decent API to convert the voice samples into numpy arrays. The Audiolab module uses the libsndfile C++ library to do the heavy lifting.
You can then parse the arrays to find the lower values to find the pauses.
回答3:
Use IBM STT. Using timestamps=true
you will get the word break up along with when the system detects them to have been spoken.
There are a lot of other cool features like word_alternatives_threshold
to get other possibilities of words and word_confidence
to get the confidence with which the system predicts the word. Set word_alternatives_threshold
to between (0.1 and 0.01) to get a real idea.
This needs sign on, following which you can use the username and password generated.
The IBM STT is already a part of the speechrecognition module mentioned, but to get the word timestamp, you will need to modify the function.
An extracted and modified form looks like:
def extracted_from_sr_recognize_ibm(audio_data, username=IBM_USERNAME, password=IBM_PASSWORD, language="en-US", show_all=False, timestamps=False,
word_confidence=False, word_alternatives_threshold=0.1):
assert isinstance(username, str), "``username`` must be a string"
assert isinstance(password, str), "``password`` must be a string"
flac_data = audio_data.get_flac_data(
convert_rate=None if audio_data.sample_rate >= 16000 else 16000, # audio samples should be at least 16 kHz
convert_width=None if audio_data.sample_width >= 2 else 2 # audio samples should be at least 16-bit
)
url = "https://stream-fra.watsonplatform.net/speech-to-text/api/v1/recognize?{}".format(urlencode({
"profanity_filter": "false",
"continuous": "true",
"model": "{}_BroadbandModel".format(language),
"timestamps": "{}".format(str(timestamps).lower()),
"word_confidence": "{}".format(str(word_confidence).lower()),
"word_alternatives_threshold": "{}".format(word_alternatives_threshold)
}))
request = Request(url, data=flac_data, headers={
"Content-Type": "audio/x-flac",
"X-Watson-Learning-Opt-Out": "true", # prevent requests from being logged, for improved privacy
})
authorization_value = base64.standard_b64encode("{}:{}".format(username, password).encode("utf-8")).decode("utf-8")
request.add_header("Authorization", "Basic {}".format(authorization_value))
try:
response = urlopen(request, timeout=None)
except HTTPError as e:
raise sr.RequestError("recognition request failed: {}".format(e.reason))
except URLError as e:
raise sr.RequestError("recognition connection failed: {}".format(e.reason))
response_text = response.read().decode("utf-8")
result = json.loads(response_text)
# return results
if show_all: return result
if "results" not in result or len(result["results"]) < 1 or "alternatives" not in result["results"][0]:
raise Exception("Unknown Value Exception")
transcription = []
for utterance in result["results"]:
if "alternatives" not in utterance:
raise Exception("Unknown Value Exception. No Alternatives returned")
for hypothesis in utterance["alternatives"]:
if "transcript" in hypothesis:
transcription.append(hypothesis["transcript"])
return "\n".join(transcription)
回答4:
pyAudioAnalysis can segment an audio file if the words are clearly separated (this is rarely the case in natural speech). The package is relatively easy to use:
python pyAudioAnalysis/pyAudioAnalysis/audioAnalysis.py silenceRemoval -i SPEECH_AUDIO_FILE_TO_SPLIT.mp3 --smoothing 1.0 --weight 0.3
More details on my blog.
来源:https://stackoverflow.com/questions/36458214/split-speech-audio-file-on-words-in-python