问题
I have a map which represents a configuration. It's a map of std::string
and boost::any
.
This map is initialized at the start and I'd like the user to be able to override these options on the command line.
What I'd love to do is build the program options from this map using the options_description::add_option()
method. However, it takes a template argument po::value<>
whereas all I have is boost::any
.
So far, I just have the shell of the code. m_Config
represents my configuration class, and getTuples()
returns a std::map<std::string, Tuple>
. TuplePair
is a typedef of std::pair<std::string, Tuple>
and the Tuple contains the boost::any
I am interested in.
po::options_description desc;
std::for_each(m_Config.getTuples().begin(),
m_Config.getTuples().end(),
[&desc](const TuplePair& _pair)
{
// what goes here? :)
// desc.add_options() ( _pair.first, po::value<???>, "");
});
Is there a way to build it this way, or do I need to resort to doing it myself?
Thanks in advance!
回答1:
boost::any
is not applicable to your problem. It performs the most basic form of type erasure: storage and (type-safe) retrieval, and that's it. As you've seen, no other operations can be performed. As jhasse points out, you could just test every type you want to support, but this is a maintenance nightmare.
Better would be to expand upon the idea boost::any
uses. Unfortunately this requires a bit of boiler-plate code. If you'd like to try it, there's a new Boost library being discussed right now on the mailing list (titled "[boost] RFC: type erasure") that is essentially a generalized type erasure utility: you define the operations you'd like your erased type to support, and it generates the proper utility type. (It can simulate boost::any
, for example, by requiring the erased type be copy-constructible and type-safe, and can simulate boost::function<>
by additionally requiring the type be callable.)
Aside from that, though, your best option is probably to write such a type yourself. I'll do it for you:
#include <boost/program_options.hpp>
#include <typeinfo>
#include <stdexcept>
namespace po = boost::program_options;
class any_option
{
public:
any_option() :
mContent(0) // no content
{}
template <typename T>
any_option(const T& value) :
mContent(new holder<T>(value))
{
// above is where the erasure happens,
// holder<T> inherits from our non-template
// base class, which will make virtual calls
// to the actual implementation; see below
}
any_option(const any_option& other) :
mContent(other.empty() ? 0 : other.mContent->clone())
{
// note we need an explicit clone method to copy,
// since with an erased type it's impossible
}
any_option& operator=(any_option other)
{
// copy-and-swap idiom is short and sweet
swap(*this, other);
return *this;
}
~any_option()
{
// delete our content when we're done
delete mContent;
}
bool empty() const
{
return !mContent;
}
friend void swap(any_option& first, any_option& second)
{
std::swap(first.mContent, second.mContent);
}
// now we define the interface we'd like to support through erasure:
// getting the data out if we know the type will be useful,
// just like boost::any. (defined as friend free-function)
template <typename T>
friend T* any_option_cast(any_option*);
// and the ability to query the type
const std::type_info& type() const
{
return mContent->type(); // call actual function
}
// we also want to be able to call options_description::add_option(),
// so we add a function that will do so (through a virtual call)
void add_option(po::options_description desc, const char* name)
{
mContent->add_option(desc, name); // call actual function
}
private:
// done with the interface, now we define the non-template base class,
// which has virtual functions where we need type-erased functionality
class placeholder
{
public:
virtual ~placeholder()
{
// allow deletion through base with virtual destructor
}
// the interface needed to support any_option operations:
// need to be able to clone the stored value
virtual placeholder* clone() const = 0;
// need to be able to test the stored type, for safe casts
virtual const std::type_info& type() const = 0;
// and need to be able to perform add_option with type info
virtual void add_option(po::options_description desc,
const char* name) = 0;
};
// and the template derived class, which will support the interface
template <typename T>
class holder : public placeholder
{
public:
holder(const T& value) :
mValue(value)
{}
// implement the required interface:
placeholder* clone() const
{
return new holder<T>(mValue);
}
const std::type_info& type() const
{
return typeid(mValue);
}
void add_option(po::options_description desc, const char* name)
{
desc.add_options()(name, po::value<T>(), "");
}
// finally, we have a direct value accessor
T& value()
{
return mValue;
}
private:
T mValue;
// noncopyable, use cloning interface
holder(const holder&);
holder& operator=(const holder&);
};
// finally, we store a pointer to the base class
placeholder* mContent;
};
class bad_any_option_cast :
public std::bad_cast
{
public:
const char* what() const throw()
{
return "bad_any_option_cast: failed conversion";
}
};
template <typename T>
T* any_option_cast(any_option* anyOption)
{
typedef any_option::holder<T> holder;
return anyOption.type() == typeid(T) ?
&static_cast<holder*>(anyOption.mContent)->value() : 0;
}
template <typename T>
const T* any_option_cast(const any_option* anyOption)
{
// none of the operations in non-const any_option_cast
// are mutating, so this is safe and simple (constness
// is restored to the return value automatically)
return any_option_cast<T>(const_cast<any_option*>(anyOption));
}
template <typename T>
T& any_option_cast(any_option& anyOption)
{
T* result = any_option_cast(&anyOption);
if (!result)
throw bad_any_option_cast();
return *result;
}
template <typename T>
const T& any_option_cast(const any_option& anyOption)
{
return any_option_cast<T>(const_cast<any_option&>(anyOption));
}
// NOTE: My casting operator has slightly different use than
// that of boost::any. Namely, it automatically returns a reference
// to the stored value, so you don't need to (and cannot) specify it.
// If you liked the old way, feel free to peek into their source.
#include <boost/foreach.hpp>
#include <map>
int main()
{
// (it's a good exercise to step through this with
// a debugger to see how it all comes together)
typedef std::map<std::string, any_option> map_type;
typedef map_type::value_type pair_type;
map_type m;
m.insert(std::make_pair("int", any_option(5)));
m.insert(std::make_pair("double", any_option(3.14)));
po::options_description desc;
BOOST_FOREACH(pair_type& pair, m)
{
pair.second.add_option(desc, pair.first.c_str());
}
// etc.
}
Let me know if something is unclear. :)
回答2:
template<class T>
bool any_is(const boost::any& a)
{
try
{
boost::any_cast<const T&>(a);
return true;
}
catch(boost::bad_any_cast&)
{
return false;
}
}
// ...
po::options_description desc;
std::for_each(m_Config.getTuples().begin(),
m_Config.getTuples().end(),
[&desc](const TuplePair& _pair)
{
if(any_is<int>(_pair.first))
{
desc.add_options() { _pair.first, po::value<int>, ""};
}
else if(any_is<std::string>(_pair.first))
{
desc.add_options() { _pair.first, po::value<std::string>, ""};
}
else
{
// ...
}
});
// ...
If you have more than a handful of types consider using typelists.
来源:https://stackoverflow.com/questions/6122094/building-boostoptions-from-a-string-boostany-map