问题
Foo foo = Foo.builder()
.setColor(red)
.setName("Fred")
.setSize(42)
.build();
So I know there is the following "Builder" solution for creating named parameters when calling a method. Although, this only seems to work with inner static classes as the builder or am I wrong? I had a look at some tutorials for builder pattern but they seem really complex for what im trying to do. Is there any way to keep the Foo class and Builder class separate while having the benefit of named parameters like the code above?
Below a typical setup:
public class Foo {
public static class Builder {
public Foo build() {
return new Foo(this);
}
public Builder setSize(int size) {
this.size = size;
return this;
}
public Builder setColor(Color color) {
this.color = color;
return this;
}
public Builder setName(String name) {
this.name = name;
return this;
}
// you can set defaults for these here
private int size;
private Color color;
private String name;
}
public static Builder builder() {
return new Builder();
}
private Foo(Builder builder) {
size = builder.size;
color = builder.color;
name = builder.name;
}
private final int size;
private final Color color;
private final String name;
}
回答1:
Use composition. To make things easier and cleaner, do not replicate all attributes in source (Foo
) and builder (Builder
) class.
For example, have Foo
class inside Builder
instead of each of Foo
attribute.
simple code snippet:
import java.util.*;
class UserBasicInfo{
String nickName;
String birthDate;
String gender;
public UserBasicInfo(String name,String date,String gender){
this.nickName = name;
this.birthDate = date;
this.gender = gender;
}
public String toString(){
StringBuilder sb = new StringBuilder();
sb.append("Name:DOB:Gender:").append(nickName).append(":").append(birthDate).append(":").
append(gender);
return sb.toString();
}
}
class ContactInfo{
String eMail;
String mobileHome;
String mobileWork;
public ContactInfo(String mail, String homeNo, String mobileOff){
this.eMail = mail;
this.mobileHome = homeNo;
this.mobileWork = mobileOff;
}
public String toString(){
StringBuilder sb = new StringBuilder();
sb.append("email:mobile(H):mobile(W):").append(eMail).append(":").append(mobileHome).append(":").append(mobileWork);
return sb.toString();
}
}
class FaceBookUser {
String userName;
UserBasicInfo userInfo;
ContactInfo contactInfo;
public FaceBookUser(String uName){
this.userName = uName;
}
public void setUserBasicInfo(UserBasicInfo info){
this.userInfo = info;
}
public void setContactInfo(ContactInfo info){
this.contactInfo = info;
}
public String getUserName(){
return userName;
}
public UserBasicInfo getUserBasicInfo(){
return userInfo;
}
public ContactInfo getContactInfo(){
return contactInfo;
}
public String toString(){
StringBuilder sb = new StringBuilder();
sb.append("|User|").append(userName).append("|UserInfo|").append(userInfo).append("|ContactInfo|").append(contactInfo);
return sb.toString();
}
static class FaceBookUserBuilder{
FaceBookUser user;
public FaceBookUserBuilder(String userName){
this.user = new FaceBookUser(userName);
}
public FaceBookUserBuilder setUserBasicInfo(UserBasicInfo info){
user.setUserBasicInfo(info);
return this;
}
public FaceBookUserBuilder setContactInfo(ContactInfo info){
user.setContactInfo(info);
return this;
}
public FaceBookUser build(){
return user;
}
}
}
public class BuilderPattern{
public static void main(String args[]){
FaceBookUser fbUser1 = new FaceBookUser.FaceBookUserBuilder("Ravindra").build(); // Mandatory parameters
UserBasicInfo info = new UserBasicInfo("sunrise","25-May-1975","M");
// Build User name + Optional Basic Info
FaceBookUser fbUser2 = new FaceBookUser.FaceBookUserBuilder("Ravindra").
setUserBasicInfo(info).build();
// Build User name + Optional Basic Info + Optional Contact Info
ContactInfo cInfo = new ContactInfo("xxx@xyz.com","1111111111","2222222222");
FaceBookUser fbUser3 = new FaceBookUser.FaceBookUserBuilder("Ravindra").
setUserBasicInfo(info).
setContactInfo(cInfo).build();
System.out.println("Facebook user 1:"+fbUser1);
System.out.println("Facebook user 2:"+fbUser2);
System.out.println("Facebook user 3:"+fbUser3);
}
}
output:
Facebook user 1:|User|Ravindra|UserInfo|null|ContactInfo|null
Facebook user 2:|User|Ravindra|UserInfo|Name:DOB:Gender:sunrise:25-May-1975:M|ContactInfo|null
Facebook user 3:|User|Ravindra|UserInfo|Name:DOB:Gender:sunrise:25-May-1975:M|ContactInfo|email:mobile(H):mobile(W):xxx@xyz.com:1111111111:2222222222
Explanation:
FaceBookUser
is a complex object with below attributes using composition:String userName; UserBasicInfo userInfo; ContactInfo contactInfo;
FaceBookUserBuilder
is a static builder class, which contains and buildsFaceBookUser
.userName is only Mandatory parameter to build FaceBookUser
FaceBookUserBuilder
buildsFaceBookUser
by setting optional parameters :UserBasicInfo
andContactInfo
This example illustrates three different
FaceBookUsers
with different attributes, built from Builder.- fbUser1 was built as FaceBookUser with userName attribute only
- fbUser2 was built as FaceBookUser with userName and UserBasicInfo
- fbUser3 was built as FaceBookUser with userName,UserBasicInfo and ContactInfo
In this example, composition has been used instead of duplicating all attributes of FaceBookUser in Builder class.
EDIT:
Group all related attributes into logical classes. Define all these classes in FaceBookUser. Instead of adding all these member variables again in Builder
, contain FaceBookUser
in Builder
class.
For simplicity, I have added two classes: UserBasicInfo and ContactInfo . Now explode this FaceBookUser class with other attributes like
NewsFeed
Messages
Friends
Albums
Events
Games
Pages
Ads
etc.
If you duplicate all these attributes in both Builder
and FaceBookUser
, code will become difficult to manage. Instead, by using composition of FaceBookUser
in FaceBookUserBuilder
itself, you can simply construction process.
Once you add above attributes, you will build FaceBookUser
in step-by-step process as usual.
It will be like this:
FaceBookUser fbUser3 = new FaceBookUser.FaceBookUserBuilder("Ravindra").
setUserBasicInfo(info).
setNewsFeed(newsFeed).
setMessages(messages).
setFriends(friends).
setAlbums(albums).
setEvents(events).
setGames(games).
setAds(ads).build();
回答2:
You can sure change the fields of your Builder class to be private - then you just need a (public) getter method for each "property" on the builder; and the constructor in Foo calls those methods; instead of just fetching the fields in the Builder object.
Then you can just move your Builder class out of Foo. Simple and straightforward.
But keep in mind: in the end, Builder and Foo are very closely related. They share a common set of fields by design. So any change to Foo affects Builder; and vice versa. Thus it makes a lot of sense to keep them "close together". Maybe not as inner/outer class, but maybe still within the same source file! But then ... only one of them can be public. Is that really what you want?!
In other words: don't rip things apart just "because you can". Only do it if you have good reasons to do so, and if the thing that comes out of that is better than your current solution!
Edit: your problem might not be separation of Foo and Builder, but the fact that your Foo class has too many fields in the first place. Dont forget about the single responsibility principle ... when your class needs more than 5, 6 fields ... it is probably doing too much and should be further sliced! Keep in mind: good OO design is first of all about behavior; not about having 10, 20 fields within some object!
回答3:
It's difficult to strictly define "The Builder Pattern™", and there are several degrees of freedom regarding the design choices. Some concepts can easily be mixed or abused, and beyond that, it is generally hard (and nearly always wrong) to say "you always have to do it exactly like that".
The question is what should be achieved by applying a "pattern". In your question and the example, you already mixed two concepts, namely the builder pattern and the fluent interface. Playing devil's advocate, one could even sneakily argue that the "Builder" in your case is just the Parameter Object that Thomas already mentioned, which is constructed in a special way (fluently) and enriched with some tricky combination of public
and private
visibilities.
Some of the possible goals of the builder pattern are overlapping or go hand in hand. But you should ask yourself what the primary goal is in your case:
- Should the resulting object be immutable?
- Should it be really immutable, with only
final
final fields, or could there also be setters that just should not be public? (The builder could still call these non-public setters!)
- Should it be really immutable, with only
- Is the goal to limit visibility in general?
- Should there be polymorphic instantiation?
- Is the main goal to summarize a large number of constructor parameters?
- Is the main goal to offer an easy configuration with a fluent interface, and to manage "default" values? ...
As all these question will have an effect on the subtle differences in the design. However, regarding your actual, high level, "syntactic" question:
You could design the builder as a
public static
inner class (what you did in the example).public class Person { ... public static PersonBuilder create() { ... } public static class PersonBuilder { ... public Person build() { ... } } }
This offers the strictest form of privacy: The constructors of
Person
andPersonBuilder
may both beprivate
.You could also place the actual class and its builder in separate files:
public class Person { ... }
and
public class PersonBuilder { ... }
A reasonable degree of privacy can be achieved here: The constructors of both can be package private (i.e. have default visibility).
In both cases, the actual usage for clients would be the same, except for the name of the builder class (package.Person.PersonBuilder
vs. package.PersonBuilder
). The "contents" of the classes would also be the same (except for slightly different visibilities). And in both cases, you can create subclasses of Person
, if desired, depending on the builder configuration, and the builder itself can have a fluent interface.
回答4:
As an alternative to the builder pattern, you could also use a parameter object:
class FooParams {
public int size;
public Color color;
public String name;
}
You can use getters and setters here, instead of public fields, if you prefer.
Then the Foo
constructor takes one of these as an argument:
public Foo(FooParams params) {
this.size = params.size;
this.color = params.color;
this.name = params.name;
}
来源:https://stackoverflow.com/questions/39708728/keeping-builder-in-separate-class-fluent-interface