问题
I have a vector, such as c(1, 3, 4, 5, 9, 10, 17, 29, 30)
and I would like to group together the 'neighboring' elements that form a regular, consecutive sequence in a ragged vector resulting in:
L1: 1
L2: 3,4,5
L3: 9,10
L4: 17
L5: 29,30
Naive code (of an ex-C programmer):
partition.neighbors <- function(v)
{
result <<- list() #jagged array
currentList <<- v[1] #current series
for(i in 2:length(v))
{
if(v[i] - v [i-1] == 1)
{
currentList <<- c(currentList, v[i])
}
else
{
result <<- c(result, list(currentList))
currentList <<- v[i] #next series
}
}
return(result)
}
Now I understand that
a) R is not C (despite the curly brackets)
b) global variables are pure evil
c) that is a horribly inefficient way of achieving the result
, so any better solutions are welcome.
回答1:
Making heavy use of some R idioms:
> split(v, cumsum(c(1, diff(v) != 1)))
$`1`
[1] 1
$`2`
[1] 3 4 5
$`3`
[1] 9 10
$`4`
[1] 17
$`5`
[1] 29 30
回答2:
daroczig writes "you could write a lot neater code based on diff
"...
Here's one way:
split(v, cumsum(diff(c(-Inf, v)) != 1))
EDIT (added timings):
Tommy discovered this could be faster by being careful with types; the reason it got faster is that split
is faster on integers, and is actually faster still on factors.
Here's Joshua's solution; the result from the cumsum
is a numeric because it's being c
'd with 1
, so it's the slowest.
system.time({
a <- cumsum(c(1, diff(v) != 1))
split(v, a)
})
# user system elapsed
# 1.839 0.004 1.848
Just c
ing with 1L
so the result is an integer speeds it up considerably.
system.time({
a <- cumsum(c(1L, diff(v) != 1))
split(v, a)
})
# user system elapsed
# 0.744 0.000 0.746
This is Tommy's solution, for reference; it's also splitting on an integer.
> system.time({
a <- cumsum(c(TRUE, diff(v) != 1L))
split(v, a)
})
# user system elapsed
# 0.742 0.000 0.746
Here's my original solution; it also is splitting on an integer.
system.time({
a <- cumsum(diff(c(-Inf, v)) != 1)
split(v, a)
})
# user system elapsed
# 0.750 0.000 0.754
Here's Joshua's, with the result converted to an integer before the split
.
system.time({
a <- cumsum(c(1, diff(v) != 1))
a <- as.integer(a)
split(v, a)
})
# user system elapsed
# 0.736 0.002 0.740
All the versions that split
on an integer vector are about the same; it could be even faster if that integer vector was already a factor, as the conversion from integer to factor actually takes about half the time. Here I make it into a factor directly; this is not recommended in general because it depends on the structure of the factor class. It'ss done here for comparison purposes only.
system.time({
a <- cumsum(c(1L, diff(v) != 1))
a <- structure(a, class = "factor", levels = 1L:a[length(a)])
split(v,a)
})
# user system elapsed
# 0.356 0.000 0.357
回答3:
Joshua and Aaron were spot on. However, their code can still be made more than twice as fast by careful use of the correct types, integers and logicals:
split(v, cumsum(c(TRUE, diff(v) != 1L)))
v <- rep(c(1:5, 19), len = 1e6) # Huge vector...
system.time( split(v, cumsum(c(1, diff(v) != 1))) ) # Joshua's code
# user system elapsed
# 2.64 0.00 2.64
system.time( split(v, cumsum(c(TRUE, diff(v) != 1L))) ) # Modified code
# user system elapsed
# 1.09 0.00 1.12
回答4:
You can create a data.frame
and assign the elements to groups using diff
, ifelse
and cumsum
, then aggregate using tapply
:
v.df <- data.frame(v = v)
v.df$group <- cumsum(ifelse(c(1, diff(v) - 1), 1, 0))
tapply(v.df$v, v.df$group, function(x) x)
$`1`
[1] 1
$`2`
[1] 3 4 5
$`3`
[1] 9 10
$`4`
[1] 17
$`5`
[1] 29 30
回答5:
You could define the cut-points easily:
which(diff(v) != 1)
Based on that try:
v <- c(1,3,4,5,9,10,17,29,30)
cutpoints <- c(0, which(diff(v) != 1), length(v))
ragged.vector <- vector("list", length(cutpoints)-1)
for (i in 2:length(cutpoints)) ragged.vector[[i-1]] <- v[(cutpoints[i-1]+1):cutpoints[i]]
Which results in:
> ragged.vector
[[1]]
[1] 1
[[2]]
[1] 3 4 5
[[3]]
[1] 9 10
[[4]]
[1] 17
[[5]]
[1] 29 30
This algorithm is not a nice one but you could write a lot neater code based on diff
:) Good luck!
来源:https://stackoverflow.com/questions/5222061/how-to-partition-a-vector-into-groups-of-regular-consecutive-sequences