【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>>
Java运行状态分析2:线程状态及堆栈信息
基本概念
出现内存泄漏或者运行缓慢场景,有时候无法直接从业务日志看出问题时候,需要分析jvm内存和线程堆栈
线程堆栈信息主要记录jvm线程在某时刻线程执行情况,分析线程状态可以跟踪到程序出问题的地方 内存堆栈信息主要记录jvm堆中在某时刻对象使用情况,主要用于跟踪是哪个对象占用了太多的空间,从而跟踪导致内存泄漏的地方
跟踪线程信息
查看当前线程数量
actuator
1.x
http://host:port/metrics/threads //当前进程的线程数 http://host:port/metrics/threads.daemon //当前进程后台驻留线程数 http://host:port/metrics/threads.peak //当前进程线程数峰值
2.x
http://host:port/actuator/metrics/jvm.threads.daemon //当前进程后台驻留线程数 http://host:port/actuator/metrics/jvm.threads.live //当前进程的线程数 http://host:port/actuator/metrics/jvm.threads.peak //当前进程线程数峰值
hystrix 线程状态
如果接入了turbine可以直接通过turbine查看整个集群状态
当集群较大的时候,单纯想看hystrix线程池状态,可以单独从hystrix监控统计类里面获取
http://host:port/sys/hystrix/threads
源码如下:
import com.alibaba.fastjson.JSON; import com.netflix.hystrix.HystrixThreadPoolMetrics; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.jmx.export.annotation.ManagedResource; import org.springframework.scheduling.annotation.EnableScheduling; import org.springframework.scheduling.annotation.Scheduled; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestController; import java.util.List; import java.util.stream.Collectors; /** * @author yugj * @date 19/5/5 22:17. */ @RestController @RequestMapping(path = "/sys/hystrix") @ManagedResource(description = "hystrix Endpoint") @EnableScheduling public class HystrixThreadPoolEndpoint { private boolean showStats = false; private static final Logger log = LoggerFactory.getLogger(HystrixThreadPoolEndpoint.class); @GetMapping(value = "/threads") public List<HystrixThreadStats> threadStats() { return HystrixThreadPoolMetrics.getInstances().stream().map((m) -> { final HystrixThreadStats stats = new HystrixThreadStats(); stats.poolName = m.getThreadPoolKey().name(); stats.cumulativeExecuted = m.getCumulativeCountThreadsExecuted(); stats.currentActiveCount = m.getCurrentActiveCount().intValue(); stats.currentCompletedCount = m.getCurrentCompletedTaskCount().intValue(); stats.currentCorePoolSize = m.getCurrentCorePoolSize().intValue(); stats.currentLargestPoolSize = m.getCurrentLargestPoolSize().intValue(); stats.currentMaxPoolSize = m.getCurrentMaximumPoolSize().intValue(); stats.currentPoolSize = m.getCurrentPoolSize().intValue(); stats.currentQueueSize = m.getCurrentQueueSize().intValue(); stats.currentTaskCount = m.getCurrentTaskCount().intValue(); return stats; }).collect(Collectors.toList()); } @GetMapping(value = "/setShowStats") public String setShowStats(Boolean showStats) { if (showStats != null) { this.showStats = showStats; } return "this.show stats:" + this.showStats; } @Scheduled(fixedRate = 5000) public void showStats() { if (showStats) { List<HystrixThreadPoolEndpoint.HystrixThreadStats> statsList = threadStats(); log.info("thread stats :{}", JSON.toJSONString(statsList)); } } class HystrixThreadStats { private String poolName; private Long cumulativeExecuted; private Integer currentActiveCount; private Integer currentCompletedCount; private Integer currentCorePoolSize; private Integer currentLargestPoolSize; private Integer currentMaxPoolSize; private Integer currentPoolSize; private Integer currentQueueSize; private Integer currentTaskCount; public String getPoolName() { return poolName; } public void setPoolName(String poolName) { this.poolName = poolName; } public Long getCumulativeExecuted() { return cumulativeExecuted; } public void setCumulativeExecuted(Long cumulativeExecuted) { this.cumulativeExecuted = cumulativeExecuted; } public Integer getCurrentActiveCount() { return currentActiveCount; } public void setCurrentActiveCount(Integer currentActiveCount) { this.currentActiveCount = currentActiveCount; } public Integer getCurrentCompletedCount() { return currentCompletedCount; } public void setCurrentCompletedCount(Integer currentCompletedCount) { this.currentCompletedCount = currentCompletedCount; } public Integer getCurrentCorePoolSize() { return currentCorePoolSize; } public void setCurrentCorePoolSize(Integer currentCorePoolSize) { this.currentCorePoolSize = currentCorePoolSize; } public Integer getCurrentLargestPoolSize() { return currentLargestPoolSize; } public void setCurrentLargestPoolSize(Integer currentLargestPoolSize) { this.currentLargestPoolSize = currentLargestPoolSize; } public Integer getCurrentMaxPoolSize() { return currentMaxPoolSize; } public void setCurrentMaxPoolSize(Integer currentMaxPoolSize) { this.currentMaxPoolSize = currentMaxPoolSize; } public Integer getCurrentPoolSize() { return currentPoolSize; } public void setCurrentPoolSize(Integer currentPoolSize) { this.currentPoolSize = currentPoolSize; } public Integer getCurrentQueueSize() { return currentQueueSize; } public void setCurrentQueueSize(Integer currentQueueSize) { this.currentQueueSize = currentQueueSize; } public Integer getCurrentTaskCount() { return currentTaskCount; } public void setCurrentTaskCount(Integer currentTaskCount) { this.currentTaskCount = currentTaskCount; } } }
linux
ps huH p {pid}|wc -l
jstack生成线程堆栈
当服务cup飙升或者出问题需要从主机层面定位时候,使用top -c 命令查看对应哪个进程占用了过高资源
找到资源占用高的进程
明确需要定位的进程通过如下命令找到对应的进程id
ps aux|grep {application alias}
可以通过如下命令定位具体高load线程:
查询进程具体哪个线程占用高load top -Hp {进程pid} thread id为十六进制格式转十六进制值 printf %x {线程pid} 指定特定行数堆栈信息 jstack {进程id}|grep -A 200 {线程id}
接下来通过jstack导出对应的线程堆栈
jstack 对应参数如下
-
-m to print both java and native frames (mixed mode)
-
-l long listing. Prints additional information about locks
服务器线程相对较多,文件大小较大,一般不会考虑在服务器看,另外这样查也会导致忽略了一些统计信息
通过如下命令导出文件,下载到本地查
jstack -l {pid} >> {dump-file-path}
docker环境涉及一些权限,需要进入docker执行,docker里面进程id根据实际情况,一般会联系运维操作
如何查看 分析dump文件,请看下文
来源:oschina
链接:https://my.oschina.net/u/2408030/blog/3074618