问题
I'm looking for advices to speed up my implementation of Dijkstra Shortest Path Search on a weighted graph which is a square matrix N x N. The weight on horizontal vertice is called H (resp. V on vertical ones).
A picture is worth a thousand words:
(source: free.fr)
Of course, this is part of a bigger application, but I've extracted the relevant bit here:
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;
const
N = 200; //Working on a grid of N x N, here for a quick test, in practice, it's more 10000
type
TForm1 = class(TForm)
Button1: TButton;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
end;
TNode = class
public
ID, //Number of the Node
origin, //From which Node did I came?
weight : integer; //The total weight of the path to Node ID
done : boolean; //Is the Node already explored?
constructor Create(myID, myOrigin, myweight: integer);
end;
var
Form1: TForm1;
implementation
var
H, V : array of integer;
{$R *.dfm}
constructor TNode.Create(myID, myOrigin, myweight: integer);
begin
ID:=MyID;
origin:=MyOrigin;
weight:=MyWeight;
end;
{------------------------------------------------------------------------------}
Function GetNodeFromID(ID: integer; NodeList: TList) : TNode; overload;
var
I: Integer;
Node: TNode;
begin
result:=nil;
for I := 0 to NodeList.count-1 do
begin
Node := NodeList[i];
if Node.ID=ID then
begin
result:=Node;
break;
end;
end;
end;
{------------------------------------------------------------------------------}
Function GetNodeOfMiniWeight(NodeList: TList) : TNode; overload;
var
I, min: Integer;
Node: TNode;
begin
result:=nil;
min :=maxint;
for I := 0 to NodeList.count-1 do
begin
Node := NodeList[i];
if Node.done then continue;
if Node.weight < min then
begin
result:=Node;
min := Node.weight;
end;
end;
end;
{------------------------------------------------------------------------------}
procedure SearchShortestPath(origin,arrival: integer);
var
NewWeight: integer;
NodeList : Tlist;
NodeFrom, //The Node currently being examined
NodeTo :TNode; //The Node where it is intented to go
s : string;
begin
NodeList := Tlist.Create;
NodeFrom := TNode.Create(origin,MaxInt,0);
NodeList.Add(NodeFrom);
while not (NodeFrom.ID = arrival) do //Arrived?
begin
//Path toward the top
if (NodeFrom.ID > N-1) //Already at the top of the grid
and not(NodeFrom.origin-NodeFrom.ID = N) then //Coming from the top
begin
NewWeight:=NodeFrom.weight + H[NodeFrom.ID-N];
NodeTo := GetNodeFromID(NodeFrom.ID-N, NodeList);
if NodeTo <> nil then
begin
if NodeTo.weight > NewWeight then
begin
NodeTo.Origin:=NodeFrom.ID;
NodeTo.weight:=NewWeight;
end;
end
else
begin
NodeTo := TNode.Create(NodeFrom.ID-N,NodeFrom.ID,NewWeight);
NodeList.Add(NodeTo);
end;
end;
//Path toward the bottom
if (NodeFrom.ID < N*N-N) //Already at the bottom of the grid
and not(NodeFrom.Origin- NodeFrom.ID = N) then //Coming from the bottom
begin
NewWeight:=NodeFrom.weight + H[NodeFrom.ID];
NodeTo := GetNodeFromID(NodeFrom.ID+N, NodeList);
if NodeTo <> nil then
begin
if NodeTo.weight > NewWeight then
begin
NodeTo.Origin:=NodeFrom.ID;
NodeTo.weight:=NewWeight;
end;
end
else
begin
NodeTo := TNode.Create(NodeFrom.ID+N,NodeFrom.ID,NewWeight);
NodeList.Add(NodeTo);
end;
end;
//Path toward the right
if not(NodeFrom.ID mod N = N-1) //Already at the extrem right of the grid
and not(NodeFrom.Origin - NodeFrom.ID = 1) then //Coming from the right
begin
NewWeight:=NodeFrom.weight + V[NodeFrom.ID];
NodeTo := GetNodeFromID(NodeFrom.ID+1, NodeList);
if NodeTo <> nil then
begin
if NodeTo.weight > NewWeight then
begin
NodeTo.Origin:=NodeFrom.ID;
NodeTo.weight:=NewWeight;
end;
end
else
begin
NodeTo := TNode.Create(NodeFrom.ID+1,NodeFrom.ID,NewWeight);
NodeList.Add(NodeTo);
end;
end;
//Path toward the left
if not (NodeFrom.ID mod N = 0) //Already at the extrem right of the grid
and not(NodeFrom.Origin - NodeFrom.ID = -1) then //Coming from the left
begin
NewWeight:=NodeFrom.weight + V[NodeFrom.ID-1];
NodeTo := GetNodeFromID(NodeFrom.ID-1, NodeList);
if NodeTo <> nil then
begin
if NodeTo.weight > NewWeight then
begin
NodeTo.Origin:=NodeFrom.ID;
NodeTo.weight:=NewWeight;
end;
end
else
begin
NodeTo := TNode.Create(NodeFrom.ID-1,NodeFrom.ID,NewWeight);
NodeList.Add(NodeTo);
end;
end;
NodeFrom.done :=true;
NodeFrom:=GetNodeOfMiniWeight(NodeList);
end;
s:='The shortest path from '
+ inttostr(arrival) + ' to '
+ inttostr(origin) + ' is : ';
//Get the path
while (NodeFrom.ID <> origin) do
begin
s:= s + inttostr(NodeFrom.ID) + ', ';
NodeFrom:=GetNodeFromID(NodeFrom.Origin, NodeList);
end;
s:= s + inttostr(NodeFrom.ID);
ShowMessage(s);
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
SearchShortestPath(Random(N*N),Random(N*N));
end;
procedure TForm1.FormCreate(Sender: TObject);
var
I: Integer;
begin
//Initialisation
randomize;
SetLength(V,N*N);
SetLength(H,N*N);
for I := 0 to N*N-1 do
begin
V[I]:=random(100);
H[I]:=random(100);
end;
end;
end.
The code spend most of the time in the routines: GetNodeFromID
and GetNodeOfMiniWeight
, and a substantial time to create nodes.
I thought that I could use a binary search, but since it requires the list to be sorted, I think that I'll loose the time in sorting the list. Any advice is welcome.
回答1:
I've implemented modification of Dijkstra Shortest Path algorithm for sparsed graphs. Your graph is very sparsed (E << V^2). This code uses priority queue based on binary heap, that contains (VerticeNum, DistanceFromSource) pairs as TPoints, ordered by Distance (Point.Y). It reveals loglinear (close to linear) asymptotic behavior. Example for small graph:
Times for i5-4670
N V time, ms
100 10^4 ~15
200 4*10^4 ~50-60 //about 8000 for your implementation
400 1.6*10^5 100
1600 2.5*10^6 1300
6400 4*10^7 24000
10000 10^8 63000
//~max size in 32-bit OS due to H,V arrays memory consumption
code:
function SparseDijkstra(Src, Dest: integer): string;
var
Dist, PredV: array of integer;
I, j, vert, CurDist, toVert, len: integer;
q: TBinaryHeap;
top: TPoint;
procedure CheckAndChange;
begin
if Dist[vert] + len < Dist[toVert] then begin
Dist[toVert] := Dist[vert] + len;
PredV[toVert] := vert;
q.Push(Point(toVert, Dist[toVert]));
//old pair is still stored but has bad (higher) distance value
end;
end;
begin
SetLength(Dist, N * N);
SetLength(PredV, N * N);
for I := 0 to N * N - 1 do
Dist[I] := maxint;
Dist[Src] := 0;
q := TBinaryHeap.Create(N * N);
q.Cmp := ComparePointsByY;
q.Push(Point(Src, 0));
while not q.isempty do begin
top := q.pop;
vert := top.X;
CurDist := top.Y;
if CurDist > Dist[vert] then
continue; //out-of-date pair (bad distance value)
if (vert mod N) <> 0 then begin // step left
toVert := vert - 1;
len := H[toVert];
CheckAndChange;
end;
if (vert div N) <> 0 then begin // step up
toVert := vert - N;
len := V[toVert];
CheckAndChange;
end;
if (vert mod N) <> N - 1 then begin // step right
toVert := vert + 1;
len := H[vert];
CheckAndChange;
end;
if (vert div N) <> N - 1 then begin // step down
toVert := vert + N;
len := V[vert];
CheckAndChange;
end;
end;
q.Free;
// calculated data may be used with miltiple destination points
result := '';
vert := Dest;
while vert <> Src do begin
result := Format(', %d', [vert]) + result;
vert := PredV[vert];
end;
result := Format('%d', [vert]) + result;
end;
procedure TForm1.Button2Click(Sender: TObject);
var
t: Dword;
I, row, col: integer;
begin
t := GetTickCount;
if N < 6 then // visual checker
for I := 0 to N * N - 1 do begin
col := I mod N;
row := I div N;
Canvas.Font.Color := clBlack;
Canvas.Font.Style := [fsBold];
Canvas.TextOut(20 + col * 70, row * 70, inttostr(I));
Canvas.Font.Style := [];
Canvas.Font.Color := clRed;
if col < N - 1 then
Canvas.TextOut(20 + col * 70 + 30, row * 70, inttostr(H[I]));
Canvas.Font.Color := clBlue;
if row < N - 1 then
Canvas.TextOut(20 + col * 70, row * 70 + 30, inttostr(V[I]));
end;
Memo1.Lines.Add(SparseDijkstra({0, n*n-1}random(N * N), random(N * N)));
Memo1.Lines.Add('time ' + inttostr(GetTickCount - t));
end;
Edit: TQPriorityQueue is class for internal use, but you can try any implementation of heap-based priority queue. For example, this one. You have to change Pointer to TPoint, Word to Integer in this module.
Edit2: I've replaced proprietary queue method names in my procedure by BinaryHeap methods.
回答2:
First of all, use a profiler! For instance, see http://www.delphitools.info/samplingprofiler
Your current code has several weaknesses:
- It leaks memory (
TNode/TNodeList
instances); - You may use dynamic arrays of records instead of individual class instances for nodes (with a count stored outside);
- I was not able to recognize your algorithm just by reading the code - so I guess you may enhance the code design.
The pseudo-code of this algorithm is as followed:
for all vertices v,
dist(v) = infinity;
dist(first) = 0;
place all vertices in set toBeChecked;
while toBeChecked is not empty
{in this version, also stop when shortest path to a specific destination is found}
select v: min(dist(v)) in toBeChecked;
remove v from toBeChecked;
for u in toBeChecked, and path from v to u exists
{i.e. for unchecked adjacents to v}
do
if dist(u) > dist(v) + weight({u,v}),
then
dist(u) = dist(v) + weight({u,v});
set predecessor of u to v
save minimum distance to u in array "d"
endif
enddo
endwhile
Did you try this library from DelphiForFun ? Sounds like something already proven, updated recently, and well written. May be improved (e.g. using an array of bits instead array of boolean
), but sounds pretty correct for a start.
来源:https://stackoverflow.com/questions/22355114/optimisation-of-a-dijkstra-shortest-path-search-in-delphi