问题
I used ortools from Google to solve the problem of employees shifts using C# language. I have a simple problem in ShiftSchedulingSat is that I specified the number of employees 21 and the number of weeks 4 weeks and every day 18 Shift evenly distributed over the 3 periods and the table was created successfully and then I run the program again with all the same settings, but I was surprised that the Status: UnKnown Why?
static void Main(string[] args)
{
SolveShiftScheduling();
}
static void SolveShiftScheduling()
{
int numEmployees = 102;
int numWeeks = 4;
var shifts = new[] { "O", "M", "A", "N" };
// Fixed assignment: (employee, shift, day).
// This fixes the first 2 days of the schedule.
//var fixedAssignments = new(int Employee, int Shift, int Day)[]
//{
// (0, 0, 0),
//(1, 0, 0),
//(2, 1, 0),
//(3, 1, 0),
//(4, 2, 0),
//(5, 2, 0),
//(6, 2, 3),
//(7, 3, 0),
//(0, 1, 1),
//(1, 1, 1),
//(2, 2, 1),
//(3, 2, 1),
//(4, 2, 1),
//(5, 0, 1),
//(6, 0, 1),
//(7, 3, 1),
//};
// Request: (employee, shift, day, weight)
// A negative weight indicates that the employee desire this assignment.
//var requests = new(int Employee, int Shift, int Day, int Weight)[]
//{
//// Employee 3 wants the first Saturday off.
//(3, 0, 5, -2),
//// Employee 5 wants a night shift on the second Thursday.
//(5, 3, 10, -2),
//// Employee 2 does not want a night shift on the third Friday.
//(2, 3, 4, 4)
//};
// Shift constraints on continuous sequence :
// (shift, hard_min, soft_min, min_penalty,
// soft_max, hard_max, max_penalty)
var shiftConstraints = new(int Shift, int HardMin, int SoftMin, int MinPenalty, int SoftMax, int HardMax, int MaxPenalty)[]
{
// One or two consecutive days of rest, this is a hard constraint.
(0, 1, 1, 0, 2, 2, 0),
// Between 2 and 3 consecutive days of night shifts, 1 and 4 are
// possible but penalized.
(3, 1, 2, 20, 3, 4, 5),
};
// Weekly sum constraints on shifts days:
// (shift, hardMin, softMin, minPenalty,
// softMax, hardMax, maxPenalty)
var weeklySumConstraints = new(int Shift, int HardMin, int SoftMin, int MinPenalty, int SoftMax, int HardMax, int MaxPenalty)[]
{
// Constraints on rests per week.
(0, 1, 2, 7, 2, 3, 4),
// At least 1 night shift per week (penalized). At most 4 (hard).
(3, 0, 1, 3, 4, 4, 0),
};
// Penalized transitions:
// (previous_shift, next_shift, penalty (0 means forbidden))
var penalizedTransitions = new(int PreviousShift, int NextShift, int Penalty)[]
{
// Afternoon to night has a penalty of 4.
(2, 3, 4),
// Night to morning is forbidden.
(3, 1, 0),
(3, 2, 0),
(2, 1, 0),
};
// daily demands for work shifts (morning, afternon, night) for each day
// of the week starting on Monday.
var weeklyCoverDemands = new int[][]
{
new [] {34, 32, 22}, // Monday
new [] {34, 32, 22}, // Tuesday
new [] {34, 32, 22}, // Wednesday
new [] {34, 32, 22}, // Thursday
new [] {34, 32, 22}, // Friday
new [] {34, 32, 22}, // Saturday
new [] {34, 32, 22}, // Sunday
};
// Penalty for exceeding the cover constraint per shift type.
//var excessCoverPenalties = new[] { 2, 2, 5 };
var numDays = numWeeks * 7;
var numShifts = shifts.Length;
var model = new CpModel();
IntVar[,,] work = new IntVar[numEmployees, numShifts, numDays];
foreach (int e in Range(numEmployees))
{
foreach (int s in Range(numShifts))
{
foreach (int d in Range(numDays))
{
work[e, s, d] = model.NewBoolVar($"work{e}_{s}_{d}");
}
}
}
// Linear terms of the objective in a minimization context.
var objIntVars = new List<IntVar>();
var objIntCoeffs = new List<int>();
var objBoolVars = new List<IntVar>();
var objBoolCoeffs = new List<int>();
// Exactly one shift per day.
foreach (int e in Range(numEmployees))
{
foreach (int d in Range(numDays))
{
var temp = new IntVar[numShifts];
foreach (int s in Range(numShifts))
{
temp[s] = work[e, s, d];
}
model.Add(LinearExpr.Sum(temp) == 1);
}
}
////Fixed assignments.
//foreach (var (e, s, d) in fixedAssignments)
//{
// model.Add(work[e, s, d] == 1);
//}
// Employee requests
//foreach (var (e, s, d, w) in requests)
//{
// objBoolVars.Add(work[e, s, d]);
// objBoolCoeffs.Add(w);
//}
//Shift constraints
foreach (var constraint in shiftConstraints)
{
foreach (int e in Range(numEmployees))
{
var works = new IntVar[numDays];
foreach (int d in Range(numDays))
{
works[d] = work[e, constraint.Shift, d];
}
var (variables, coeffs) = AddSoftSequenceConstraint(
model, works,
constraint.HardMin, constraint.SoftMin, constraint.MinPenalty,
constraint.SoftMax, constraint.HardMax, constraint.MaxPenalty,
$"shift_constraint(employee {e}, shift {constraint.Shift}");
objBoolVars.AddRange(variables);
objBoolCoeffs.AddRange(coeffs);
}
}
//Weekly sum constraints
foreach (var constraint in weeklySumConstraints)
{
foreach (int e in Range(numEmployees))
{
foreach (int w in Range(numWeeks))
{
var works = new IntVar[7];
foreach (int d in Range(7))
{
works[d] = work[e, constraint.Shift, d + w * 7];
}
var (variables, coeffs) = AddSoftSumConstraint(
model, works,
constraint.HardMin, constraint.SoftMin, constraint.MinPenalty,
constraint.SoftMax, constraint.HardMax, constraint.MaxPenalty,
$"weekly_sum_constraint(employee {e}, shift {constraint.Shift}, week {w}");
objBoolVars.AddRange(variables);
objBoolCoeffs.AddRange(coeffs);
}
}
}
// Penalized transitions
foreach (var penalizedTransition in penalizedTransitions)
{
foreach (int e in Range(numEmployees))
{
foreach (int d in Range(numDays - 1))
{
var transition = new List<ILiteral>()
{
work[e, penalizedTransition.PreviousShift, d].Not(),
work[e, penalizedTransition.NextShift, d + 1].Not()
};
if (penalizedTransition.Penalty == 0)
{
model.AddBoolOr(transition);
}
else
{
var transVar = model.NewBoolVar($"transition (employee {e}, day={d}");
transition.Add(transVar);
model.AddBoolOr(transition);
objBoolVars.Add(transVar);
objBoolCoeffs.Add(penalizedTransition.Penalty);
}
}
}
}
// Cover constraints
foreach (int s in Range(1, numShifts))
{
foreach (int w in Range(numWeeks))
{
foreach (int d in Range(7))
{
var works = new IntVar[numEmployees];
foreach (int e in Range(numEmployees))
{
works[e] = work[e, s, w * 7 + d];
}
// Ignore off shift
var minDemand = weeklyCoverDemands[d][s - 1];
var worked = model.NewIntVar(minDemand, numEmployees, "");
model.Add(LinearExpr.Sum(works) == worked);
//var overPenalty = excessCoverPenalties[s - 1];
//if (overPenalty > 0)
//{
// var name = $"excess_demand(shift={s}, week={w}, day={d}";
// var excess = model.NewIntVar(0, numEmployees - minDemand, name);
// model.Add(excess == worked - minDemand);
// objIntVars.Add(excess);
// objIntCoeffs.Add(overPenalty);
//}
}
}
}
// Objective
var objBoolSum = LinearExpr.ScalProd(objBoolVars, objBoolCoeffs);
var objIntSum = LinearExpr.ScalProd(objIntVars, objIntCoeffs);
model.Minimize(objBoolSum + objIntSum);
// Solve model
var solver = new CpSolver();
solver.StringParameters =
"num_search_workers:8, log_search_progress: true, max_time_in_seconds:120";
CpSolverStatus status = solver.Solve(model);
// Print solution
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
Console.WriteLine();
var header = " ";
for (int w = 0; w < numWeeks; w++)
{
header += "M T W T F S S ";
}
Console.WriteLine(header);
foreach (int e in Range(numEmployees))
{
var schedule = "";
foreach (int d in Range(numDays))
{
foreach (int s in Range(numShifts))
{
if (solver.BooleanValue(work[e, s, d]))
{
schedule += shifts[s] + ",";
}
}
}
Console.WriteLine($"worker {e}, {schedule}");
}
//Console.WriteLine();
//Console.WriteLine("Penalties:");
//foreach (var (i, var) in objBoolVars.Select((x, i) => (i, x)))
//{
// if (solver.BooleanValue(var))
// {
// var penalty = objBoolCoeffs[i];
// if (penalty > 0)
// {
// Console.WriteLine($" {var.Name()} violated, penalty={penalty}");
// }
// else
// {
// Console.WriteLine($" {var.Name()} fulfilled, gain={-penalty}");
// }
// }
//}
//foreach (var (i, var) in objIntVars.Select((x, i) => (i, x)))
//{
// if (solver.Value(var) > 0)
// {
// Console.WriteLine($" {var.Name()} violated by {solver.Value(var)}, linear penalty={objIntCoeffs[i]}");
// }
//}
//Console.WriteLine();
//Console.WriteLine("Statistics");
//Console.WriteLine($" - status : {status}");
//Console.WriteLine($" - conflicts : {solver.NumConflicts()}");
//Console.WriteLine($" - branches : {solver.NumBranches()}");
//Console.WriteLine($" - wall time : {solver.WallTime()}");
}
// }
//Console.WriteLine("the count: " + c);
}
/// <summary>
/// Filters an isolated sub-sequence of variables assigned to True.
/// Extract the span of Boolean variables[start, start + length), negate them,
/// and if there is variables to the left / right of this span, surround the span by
/// them in non negated form.
/// </summary>
/// <param name="works">A list of variables to extract the span from.</param>
/// <param name="start">The start to the span.</param>
/// <param name="length">The length of the span.</param>
/// <returns>An array of variables which conjunction will be false if the sub-list is
/// assigned to True, and correctly bounded by variables assigned to False,
/// or by the start or end of works.</returns>
static ILiteral[] NegatedBoundedSpan(IntVar[] works, int start, int length)
{
var sequence = new List<ILiteral>();
if (start > 0)
sequence.Add(works[start - 1]);
foreach (var i in Range(length))
sequence.Add(works[start + i].Not());
if (start + length < works.Length)
sequence.Add(works[start + length]);
return sequence.ToArray();
}
/// <summary>
/// Sequence constraint on true variables with soft and hard bounds.
/// This constraint look at every maximal contiguous sequence of variables
/// assigned to true. If forbids sequence of length < hardMin or > hardMax.
/// Then it creates penalty terms if the length is < softMin or > softMax.
/// </summary>
/// <param name="model">The sequence constraint is built on this model.</param>
/// <param name="works">A list of Boolean variables.</param>
/// <param name="hardMin">Any sequence of true variables must have a length of at least hardMin.</param>
/// <param name="softMin">Any sequence should have a length of at least softMin, or a linear penalty on the delta will be added to the objective.</param>
/// <param name="minCost">The coefficient of the linear penalty if the length is less than softMin.</param>
/// <param name="softMax">Any sequence should have a length of at most softMax, or a linear penalty on the delta will be added to the objective.</param>
/// <param name="hardMax">Any sequence of true variables must have a length of at most hardMax.</param>
/// <param name="maxCost">The coefficient of the linear penalty if the length is more than softMax.</param>
/// <param name="prefix">A base name for penalty literals.</param>
/// <returns>A tuple (costLiterals, costCoefficients) containing the different penalties created by the sequence constraint.</returns>
static (IntVar[] costLiterals, int[] costCoefficients) AddSoftSequenceConstraint(CpModel model, IntVar[] works, int hardMin, int softMin, int minCost,
int softMax, int hardMax, int maxCost, string prefix)
{
var costLiterals = new List<IntVar>();
var costCoefficients = new List<int>();
// Forbid sequences that are too short.
foreach (var length in Range(1, hardMin))
{
foreach (var start in Range(works.Length - length + 1))
{
model.AddBoolOr(NegatedBoundedSpan(works, start, length));
}
}
// Penalize sequences that are below the soft limit.
if (minCost > 0)
{
foreach (var length in Range(hardMin, softMin))
{
foreach (var start in Range(works.Length - length + 1))
{
var span = NegatedBoundedSpan(works, start, length).ToList();
var name = $": under_span(start={start}, length={length})";
var lit = model.NewBoolVar(prefix + name);
span.Add(lit);
model.AddBoolOr(span);
costLiterals.Add(lit);
// We filter exactly the sequence with a short length.
// The penalty is proportional to the delta with softMin.
costCoefficients.Add(minCost * (softMin - length));
}
}
}
// Penalize sequences that are above the soft limit.
if (maxCost > 0)
{
foreach (var length in Range(softMax + 1, hardMax + 1))
{
foreach (var start in Range(works.Length - length + 1))
{
var span = NegatedBoundedSpan(works, start, length).ToList();
var name = $": over_span(start={start}, length={length})";
var lit = model.NewBoolVar(prefix + name);
span.Add(lit);
model.AddBoolOr(span);
costLiterals.Add(lit);
// Cost paid is max_cost * excess length.
costCoefficients.Add(maxCost * (length - softMax));
}
}
}
// Just forbid any sequence of true variables with length hardMax + 1
foreach (var start in Range(works.Length - hardMax))
{
var temp = new List<ILiteral>();
foreach (var i in Range(start, start + hardMax + 1))
{
temp.Add(works[i].Not());
}
model.AddBoolOr(temp);
}
return (costLiterals.ToArray(), costCoefficients.ToArray());
}
/// <summary>
/// Sum constraint with soft and hard bounds.
/// This constraint counts the variables assigned to true from works.
/// If forbids sum < hardMin or > hardMax.
/// Then it creates penalty terms if the sum is < softMin or > softMax.
/// </summary>
/// <param name="model">The sequence constraint is built on this model.</param>
/// <param name="works">A list of Boolean variables.</param>
/// <param name="hardMin">Any sequence of true variables must have a length of at least hardMin.</param>
/// <param name="softMin">Any sequence should have a length of at least softMin, or a linear penalty on the delta will be added to the objective.</param>
/// <param name="minCost">The coefficient of the linear penalty if the length is less than softMin.</param>
/// <param name="softMax">Any sequence should have a length of at most softMax, or a linear penalty on the delta will be added to the objective.</param>
/// <param name="hardMax">Any sequence of true variables must have a length of at most hardMax.</param>
/// <param name="maxCost">The coefficient of the linear penalty if the length is more than softMax.</param>
/// <param name="prefix">A base name for penalty literals.</param>
/// <returns>A tuple (costVariables, costCoefficients) containing the different
/// penalties created by the sequence constraint.</returns>
static (IntVar[] costVariables, int[] costCoefficients) AddSoftSumConstraint(CpModel model, IntVar[] works,
int hardMin, int softMin, int minCost,
int softMax, int hardMax, int maxCost, string prefix)
{
var costVariables = new List<IntVar>();
var costCoefficients = new List<int>();
var sumVar = model.NewIntVar(hardMin, hardMax, "");
// This adds the hard constraints on the sum.
model.Add(sumVar == LinearExpr.Sum(works));
var zero = model.NewConstant(0);
// Penalize sums below the soft_min target.
if (softMin > hardMin && minCost > 0)
{
var delta = model.NewIntVar(-works.Length, works.Length, "");
model.Add(delta == (softMin - sumVar));
var excess = model.NewIntVar(0, works.Length, prefix + ": under_sum");
model.AddMaxEquality(excess, new[] { delta, zero });
costVariables.Add(excess);
costCoefficients.Add(minCost);
}
// Penalize sums above the soft_max target.
if (softMax < hardMax && maxCost > 0)
{
var delta = model.NewIntVar(-works.Length, works.Length, "");
model.Add(delta == sumVar - softMax);
var excess = model.NewIntVar(0, works.Length, prefix + ": over_sum");
model.AddMaxEquality(excess, new[] { delta, zero });
costVariables.Add(excess);
costCoefficients.Add(maxCost);
}
return (costVariables.ToArray(), costCoefficients.ToArray());
}
/// <summary>
/// C# equivalent of Python range (start, stop)
/// </summary>
/// <param name="start">The inclusive start.</param>
/// <param name="stop">The exclusive stop.</param>
/// <returns>A sequence of integers.</returns>
static IEnumerable<int> Range(int start, int stop)
{
foreach (var i in Enumerable.Range(start, stop - start))
yield return i;
}
/// <summary>
/// C# equivalent of Python range (stop)
/// </summary>
/// <param name="stop">The exclusive stop.</param>
/// <returns>A sequence of integers.</returns>
static IEnumerable<int> Range(int stop)
{
return Range(0, stop);
}
来源:https://stackoverflow.com/questions/59004095/status-unknown-when-ortools-shift-employees-twice-with-the-same-settings