Status unknown when ortools shift employees twice with the same settings

巧了我就是萌 提交于 2019-12-14 03:37:02

问题


I used ortools from Google to solve the problem of employees shifts using C# language. I have a simple problem in ShiftSchedulingSat is that I specified the number of employees 21 and the number of weeks 4 weeks and every day 18 Shift evenly distributed over the 3 periods and the table was created successfully and then I run the program again with all the same settings, but I was surprised that the Status: UnKnown Why?

static void Main(string[] args)
    {
        SolveShiftScheduling();
    }

    static void SolveShiftScheduling()
    {
        int numEmployees = 102;
        int numWeeks = 4;
        var shifts = new[] { "O", "M", "A", "N" };

        // Fixed assignment: (employee, shift, day).
        // This fixes the first 2 days of the schedule.
        //var fixedAssignments = new(int Employee, int Shift, int Day)[]
        //{
        //    (0, 0, 0),
        //(1, 0, 0),
        //(2, 1, 0),
        //(3, 1, 0),
        //(4, 2, 0),
        //(5, 2, 0),
        //(6, 2, 3),
        //(7, 3, 0),
        //(0, 1, 1),
        //(1, 1, 1),
        //(2, 2, 1),
        //(3, 2, 1),
        //(4, 2, 1),
        //(5, 0, 1),
        //(6, 0, 1),
        //(7, 3, 1),
        //};

        // Request: (employee, shift, day, weight)
        // A negative weight indicates that the employee desire this assignment.
        //var requests = new(int Employee, int Shift, int Day, int Weight)[]
        //{
        //// Employee 3 wants the first Saturday off.
        //(3, 0, 5, -2),
        //// Employee 5 wants a night shift on the second Thursday.
        //(5, 3, 10, -2),
        //// Employee 2 does not want a night shift on the third Friday.
        //(2, 3, 4, 4)
        //};

        // Shift constraints on continuous sequence :
        //     (shift, hard_min, soft_min, min_penalty,
        // soft_max, hard_max, max_penalty)
        var shiftConstraints = new(int Shift, int HardMin, int SoftMin, int MinPenalty, int SoftMax, int HardMax, int MaxPenalty)[]
        {
        // One or two consecutive days of rest, this is a hard constraint.
        (0, 1, 1, 0, 2, 2, 0),
        // Between 2 and 3 consecutive days of night shifts, 1 and 4 are
        // possible but penalized.
        (3, 1, 2, 20, 3, 4, 5),
        };

        // Weekly sum constraints on shifts days:
        //     (shift, hardMin, softMin, minPenalty,
        // softMax, hardMax, maxPenalty)
        var weeklySumConstraints = new(int Shift, int HardMin, int SoftMin, int MinPenalty, int SoftMax, int HardMax, int MaxPenalty)[]
        {
        // Constraints on rests per week.
        (0, 1, 2, 7, 2, 3, 4),
        // At least 1 night shift per week (penalized). At most 4 (hard).
        (3, 0, 1, 3, 4, 4, 0),
        };

        // Penalized transitions:
        //     (previous_shift, next_shift, penalty (0 means forbidden))
        var penalizedTransitions = new(int PreviousShift, int NextShift, int Penalty)[]
        {
        // Afternoon to night has a penalty of 4.
        (2, 3, 4),
        // Night to morning is forbidden.
        (3, 1, 0),

        (3, 2, 0),

        (2, 1, 0),

        };

        // daily demands for work shifts (morning, afternon, night) for each day
        // of the week starting on Monday.
        var weeklyCoverDemands = new int[][]
        {
        new [] {34, 32, 22}, // Monday
        new [] {34, 32, 22}, // Tuesday
        new [] {34, 32, 22}, // Wednesday
        new [] {34, 32, 22}, // Thursday
        new [] {34, 32, 22}, // Friday
        new [] {34, 32, 22}, // Saturday
        new [] {34, 32, 22}, // Sunday
        };

        // Penalty for exceeding the cover constraint per shift type.
        //var excessCoverPenalties = new[] { 2, 2, 5 };

        var numDays = numWeeks * 7;
        var numShifts = shifts.Length;

        var model = new CpModel();

        IntVar[,,] work = new IntVar[numEmployees, numShifts, numDays];

        foreach (int e in Range(numEmployees))
        {
            foreach (int s in Range(numShifts))
            {
                foreach (int d in Range(numDays))
                {
                    work[e, s, d] = model.NewBoolVar($"work{e}_{s}_{d}");
                }
            }
        }

        // Linear terms of the objective in a minimization context.
        var objIntVars = new List<IntVar>();
        var objIntCoeffs = new List<int>();
        var objBoolVars = new List<IntVar>();
        var objBoolCoeffs = new List<int>();

        // Exactly one shift per day.
        foreach (int e in Range(numEmployees))
        {
            foreach (int d in Range(numDays))
            {
                var temp = new IntVar[numShifts];
                foreach (int s in Range(numShifts))
                {
                    temp[s] = work[e, s, d];
                }

                model.Add(LinearExpr.Sum(temp) == 1);
            }
        }

        ////Fixed assignments.
        //foreach (var (e, s, d) in fixedAssignments)
        //{
        //    model.Add(work[e, s, d] == 1);
        //}

        // Employee requests
        //foreach (var (e, s, d, w) in requests)
        //{
        //    objBoolVars.Add(work[e, s, d]);
        //    objBoolCoeffs.Add(w);
        //}

        //Shift constraints
        foreach (var constraint in shiftConstraints)
        {
            foreach (int e in Range(numEmployees))
            {
                var works = new IntVar[numDays];
                foreach (int d in Range(numDays))
                {
                    works[d] = work[e, constraint.Shift, d];
                }

                var (variables, coeffs) = AddSoftSequenceConstraint(
                    model, works,
                    constraint.HardMin, constraint.SoftMin, constraint.MinPenalty,
                    constraint.SoftMax, constraint.HardMax, constraint.MaxPenalty,
                    $"shift_constraint(employee {e}, shift {constraint.Shift}");

                objBoolVars.AddRange(variables);
                objBoolCoeffs.AddRange(coeffs);
            }
        }

        //Weekly sum constraints
        foreach (var constraint in weeklySumConstraints)
        {
            foreach (int e in Range(numEmployees))
            {
                foreach (int w in Range(numWeeks))
                {
                    var works = new IntVar[7];

                    foreach (int d in Range(7))
                    {
                        works[d] = work[e, constraint.Shift, d + w * 7];
                    }

                    var (variables, coeffs) = AddSoftSumConstraint(
                        model, works,
                        constraint.HardMin, constraint.SoftMin, constraint.MinPenalty,
                        constraint.SoftMax, constraint.HardMax, constraint.MaxPenalty,
                        $"weekly_sum_constraint(employee {e}, shift {constraint.Shift}, week {w}");

                    objBoolVars.AddRange(variables);
                    objBoolCoeffs.AddRange(coeffs);
                }
            }
        }

        // Penalized transitions
        foreach (var penalizedTransition in penalizedTransitions)
        {
            foreach (int e in Range(numEmployees))
            {
                foreach (int d in Range(numDays - 1))
                {
                    var transition = new List<ILiteral>()
                {
                    work[e, penalizedTransition.PreviousShift, d].Not(),
                    work[e, penalizedTransition.NextShift, d + 1].Not()
                };

                    if (penalizedTransition.Penalty == 0)
                    {
                        model.AddBoolOr(transition);
                    }
                    else
                    {
                        var transVar = model.NewBoolVar($"transition (employee {e}, day={d}");
                        transition.Add(transVar);
                        model.AddBoolOr(transition);
                        objBoolVars.Add(transVar);
                        objBoolCoeffs.Add(penalizedTransition.Penalty);
                    }
                }
            }
        }

        // Cover constraints
        foreach (int s in Range(1, numShifts))
        {
            foreach (int w in Range(numWeeks))
            {
                foreach (int d in Range(7))
                {
                    var works = new IntVar[numEmployees];
                    foreach (int e in Range(numEmployees))
                    {
                        works[e] = work[e, s, w * 7 + d];
                    }

                    // Ignore off shift
                    var minDemand = weeklyCoverDemands[d][s - 1];
                    var worked = model.NewIntVar(minDemand, numEmployees, "");
                    model.Add(LinearExpr.Sum(works) == worked);

                    //var overPenalty = excessCoverPenalties[s - 1];
                    //if (overPenalty > 0)
                    //{
                    //    var name = $"excess_demand(shift={s}, week={w}, day={d}";
                    //    var excess = model.NewIntVar(0, numEmployees - minDemand, name);
                    //    model.Add(excess == worked - minDemand);
                    //    objIntVars.Add(excess);
                    //    objIntCoeffs.Add(overPenalty);
                    //}
                }
            }
        }

        // Objective
        var objBoolSum = LinearExpr.ScalProd(objBoolVars, objBoolCoeffs);
        var objIntSum = LinearExpr.ScalProd(objIntVars, objIntCoeffs);

        model.Minimize(objBoolSum + objIntSum);

        // Solve model
        var solver = new CpSolver();
        solver.StringParameters =
            "num_search_workers:8, log_search_progress: true, max_time_in_seconds:120";

        CpSolverStatus status = solver.Solve(model);

        // Print solution
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine();
            var header = "          ";
            for (int w = 0; w < numWeeks; w++)
            {
                header += "M T W T F S S ";
            }

            Console.WriteLine(header);

            foreach (int e in Range(numEmployees))
            {
                var schedule = "";
                foreach (int d in Range(numDays))
                {
                    foreach (int s in Range(numShifts))
                    {
                        if (solver.BooleanValue(work[e, s, d]))
                        {
                            schedule += shifts[s] + ",";
                        }
                    }
                }

                Console.WriteLine($"worker {e}, {schedule}");
            }

            //Console.WriteLine();
            //Console.WriteLine("Penalties:");

            //foreach (var (i, var) in objBoolVars.Select((x, i) => (i, x)))
            //{
            //    if (solver.BooleanValue(var))
            //    {
            //        var penalty = objBoolCoeffs[i];
            //        if (penalty > 0)
            //        {
            //            Console.WriteLine($"  {var.Name()} violated, penalty={penalty}");
            //        }
            //        else
            //        {
            //            Console.WriteLine($"  {var.Name()} fulfilled, gain={-penalty}");
            //        }
            //    }
            //}

            //foreach (var (i, var) in objIntVars.Select((x, i) => (i, x)))
            //{
            //    if (solver.Value(var) > 0)
            //    {
            //        Console.WriteLine($"  {var.Name()} violated by {solver.Value(var)}, linear penalty={objIntCoeffs[i]}");
            //    }
            //}

            //Console.WriteLine();
            //Console.WriteLine("Statistics");
            //Console.WriteLine($"  - status          : {status}");
            //Console.WriteLine($"  - conflicts       : {solver.NumConflicts()}");
            //Console.WriteLine($"  - branches        : {solver.NumBranches()}");
            //Console.WriteLine($"  - wall time       : {solver.WallTime()}");
        }
        //  }
        //Console.WriteLine("the count: " + c);
    }

    /// <summary>
    /// Filters an isolated sub-sequence of variables assigned to True.
    /// Extract the span of Boolean variables[start, start + length), negate them,
    /// and if there is variables to the left / right of this span, surround the span by
    /// them in non negated form.
    /// </summary>
    /// <param name="works">A list of variables to extract the span from.</param>
    /// <param name="start">The start to the span.</param>
    /// <param name="length">The length of the span.</param>
    /// <returns>An array of variables which conjunction will be false if the sub-list is
    /// assigned to True, and correctly bounded by variables assigned to False,
    /// or by the start or end of works.</returns>
    static ILiteral[] NegatedBoundedSpan(IntVar[] works, int start, int length)
    {
        var sequence = new List<ILiteral>();

        if (start > 0)
            sequence.Add(works[start - 1]);

        foreach (var i in Range(length))
            sequence.Add(works[start + i].Not());

        if (start + length < works.Length)
            sequence.Add(works[start + length]);

        return sequence.ToArray();
    }

    /// <summary>
    /// Sequence constraint on true variables with soft and hard bounds.
    /// This constraint look at every maximal contiguous sequence of variables
    /// assigned to true. If forbids sequence of length &lt; hardMin or &gt; hardMax.
    /// Then it creates penalty terms if the length is &lt; softMin or &gt; softMax.
    /// </summary>
    /// <param name="model">The sequence constraint is built on this model.</param>
    /// <param name="works">A list of Boolean variables.</param>
    /// <param name="hardMin">Any sequence of true variables must have a length of at least hardMin.</param>
    /// <param name="softMin">Any sequence should have a length of at least softMin, or a linear penalty on the delta will be added to the objective.</param>
    /// <param name="minCost">The coefficient of the linear penalty if the length is less than softMin.</param>
    /// <param name="softMax">Any sequence should have a length of at most softMax, or a linear penalty on the delta will be added to the objective.</param>
    /// <param name="hardMax">Any sequence of true variables must have a length of at most hardMax.</param>
    /// <param name="maxCost">The coefficient of the linear penalty if the length is more than softMax.</param>
    /// <param name="prefix">A base name for penalty literals.</param>
    /// <returns>A tuple (costLiterals, costCoefficients) containing the different penalties created by the sequence constraint.</returns>
    static (IntVar[] costLiterals, int[] costCoefficients) AddSoftSequenceConstraint(CpModel model, IntVar[] works, int hardMin, int softMin, int minCost,
        int softMax, int hardMax, int maxCost, string prefix)
    {
        var costLiterals = new List<IntVar>();
        var costCoefficients = new List<int>();

        // Forbid sequences that are too short.
        foreach (var length in Range(1, hardMin))
        {
            foreach (var start in Range(works.Length - length + 1))
            {
                model.AddBoolOr(NegatedBoundedSpan(works, start, length));
            }
        }

        // Penalize sequences that are below the soft limit.

        if (minCost > 0)
        {
            foreach (var length in Range(hardMin, softMin))
            {
                foreach (var start in Range(works.Length - length + 1))
                {
                    var span = NegatedBoundedSpan(works, start, length).ToList();
                    var name = $": under_span(start={start}, length={length})";
                    var lit = model.NewBoolVar(prefix + name);
                    span.Add(lit);
                    model.AddBoolOr(span);
                    costLiterals.Add(lit);
                    // We filter exactly the sequence with a short length.
                    // The penalty is proportional to the delta with softMin.
                    costCoefficients.Add(minCost * (softMin - length));
                }
            }
        }

        // Penalize sequences that are above the soft limit.
        if (maxCost > 0)
        {
            foreach (var length in Range(softMax + 1, hardMax + 1))
            {
                foreach (var start in Range(works.Length - length + 1))
                {
                    var span = NegatedBoundedSpan(works, start, length).ToList();
                    var name = $": over_span(start={start}, length={length})";
                    var lit = model.NewBoolVar(prefix + name);
                    span.Add(lit);
                    model.AddBoolOr(span);
                    costLiterals.Add(lit);
                    // Cost paid is max_cost * excess length.
                    costCoefficients.Add(maxCost * (length - softMax));
                }
            }
        }

        // Just forbid any sequence of true variables with length hardMax + 1
        foreach (var start in Range(works.Length - hardMax))
        {
            var temp = new List<ILiteral>();

            foreach (var i in Range(start, start + hardMax + 1))
            {
                temp.Add(works[i].Not());
            }

            model.AddBoolOr(temp);
        }

        return (costLiterals.ToArray(), costCoefficients.ToArray());
    }

    /// <summary>
    /// Sum constraint with soft and hard bounds.
    /// This constraint counts the variables assigned to true from works.
    /// If forbids sum &lt; hardMin or &gt; hardMax.
    /// Then it creates penalty terms if the sum is &lt; softMin or &gt; softMax.
    /// </summary>
    /// <param name="model">The sequence constraint is built on this model.</param>
    /// <param name="works">A list of Boolean variables.</param>
    /// <param name="hardMin">Any sequence of true variables must have a length of at least hardMin.</param>
    /// <param name="softMin">Any sequence should have a length of at least softMin, or a linear penalty on the delta will be added to the objective.</param>
    /// <param name="minCost">The coefficient of the linear penalty if the length is less than softMin.</param>
    /// <param name="softMax">Any sequence should have a length of at most softMax, or a linear penalty on the delta will be added to the objective.</param>
    /// <param name="hardMax">Any sequence of true variables must have a length of at most hardMax.</param>
    /// <param name="maxCost">The coefficient of the linear penalty if the length is more than softMax.</param>
    /// <param name="prefix">A base name for penalty literals.</param>
    /// <returns>A tuple (costVariables, costCoefficients) containing the different
    /// penalties created by the sequence constraint.</returns>
    static (IntVar[] costVariables, int[] costCoefficients) AddSoftSumConstraint(CpModel model, IntVar[] works,
        int hardMin, int softMin, int minCost,
        int softMax, int hardMax, int maxCost, string prefix)
    {
        var costVariables = new List<IntVar>();
        var costCoefficients = new List<int>();
        var sumVar = model.NewIntVar(hardMin, hardMax, "");
        // This adds the hard constraints on the sum.
        model.Add(sumVar == LinearExpr.Sum(works));

        var zero = model.NewConstant(0);

        // Penalize sums below the soft_min target.

        if (softMin > hardMin && minCost > 0)
        {
            var delta = model.NewIntVar(-works.Length, works.Length, "");
            model.Add(delta == (softMin - sumVar));
            var excess = model.NewIntVar(0, works.Length, prefix + ": under_sum");
            model.AddMaxEquality(excess, new[] { delta, zero });
            costVariables.Add(excess);
            costCoefficients.Add(minCost);
        }

        // Penalize sums above the soft_max target.
        if (softMax < hardMax && maxCost > 0)
        {
            var delta = model.NewIntVar(-works.Length, works.Length, "");
            model.Add(delta == sumVar - softMax);
            var excess = model.NewIntVar(0, works.Length, prefix + ": over_sum");
            model.AddMaxEquality(excess, new[] { delta, zero });
            costVariables.Add(excess);
            costCoefficients.Add(maxCost);
        }

        return (costVariables.ToArray(), costCoefficients.ToArray());
    }

    /// <summary>
    /// C# equivalent of Python range (start, stop)
    /// </summary>
    /// <param name="start">The inclusive start.</param>
    /// <param name="stop">The exclusive stop.</param>
    /// <returns>A sequence of integers.</returns>
    static IEnumerable<int> Range(int start, int stop)
    {
        foreach (var i in Enumerable.Range(start, stop - start))
            yield return i;
    }

    /// <summary>
    /// C# equivalent of Python range (stop)
    /// </summary>
    /// <param name="stop">The exclusive stop.</param>
    /// <returns>A sequence of integers.</returns>
    static IEnumerable<int> Range(int stop)
    {
        return Range(0, stop);
    }

来源:https://stackoverflow.com/questions/59004095/status-unknown-when-ortools-shift-employees-twice-with-the-same-settings

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!